• 제목/요약/키워드: Ignition and combustion

검색결과 1,165건 처리시간 0.035초

가시화 엔진을 이용한 직분식 예혼합 압축착화 디젤엔진의 화염 및 연소특성 (Flame and Combustion Characteristics of D.I. HCCI Diesel Engine using a Visualization Engine)

  • 권오영;류재덕;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.100-107
    • /
    • 2002
  • Combustion characteristics of diesel engine depends on mixture formation process during Ignition delay and premixed flame region. Fuel and air mixture formation has a great influence on the exhaust emission. Therefore, the present study focused on the combustion mechanism of Homogeneous Charge Compression Ignition (HCCI) engine. This study was carried out to investigate the combustion characteristics of direct injection type HCCI engine using a visualization engine. To investigate the combustion characteristics, we measured cylinder pressure and calculated heat release rate. In addition, we investigated the flame development process by using visualization engine system. From the experimental result of HCCI engine, we observed that cool flame was always appeared in HCCI combustion and magnitude of cool flame was proportional to magnitude of hot flame. And we also found that fuel injection timing is more effective to increase lean homogeneous combustion performance than intake air temperature. Since increasing the intake air temperature improved fuel vaporization before the fuel atomizes, we concluded that increasing the temperature has disadvantage fur homogeneous premixed combustion.

바이오디젤 엔진의 연소과정 모델링 (Modeling of Biodiesel Combustion on Compression Ignition Engine)

  • 최민기;차준표;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.309-310
    • /
    • 2012
  • Modeling of biodiesel combustion on compression ignition engine was conducted by using the KIVA3v-Release 2 code coupled with Chemkin chemistry solver2. In order to calculate the chemical kinetics of combustion of biodiesel, a reduced mechanism of methyl decanoate and methyl 9-decanoate was used. It is composed of 123 species and 394 reactions. Also, the experiments were performed on a single-cylinder engine. The simulation results agreed well with experiments results. And soot concentrations of biodiesel were lower than those of diesel.

  • PDF

라디칼인젝터를 적용한 정적연소기의 연소특성에 관한 계산적 연구 (Numerical Study on Combustion Charaterestics in a Constant Volume Combustor Having a Radical Injector)

  • 조상무;전재혁;장인선;정성식;박권하
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1309-1316
    • /
    • 2003
  • A premixed-compression-ignition engine has been studied to improve the efficiency and to decrease exhaust emissions. However those systems have some difficulties for controlling combustion process. Radical is an activated chemical species formed by a chemical chain reaction between reactant and product. When the chain reactions occur, the energy bond of species is broken easily by the released radicals. The combustion chamber of the premixed-compression-ingnition engine is consist of a main chamber with lean premixture and a subchamber with rich premixture. Those are connected by narrow cylinderical connections. With ignition start in the subchamber, many different kinds of radical is jetted into the main chamber. The premixed gas in main chamber is quickly burned up by the radical ignition in multi-pionts. In this paper, the combustion phenomena in a constant volume combustor having a radical injector are numerically analyzed. The some constants in the reaction rate equation are adjusted by the experimental results tested in the same geometrical chamber. The code is applied on the two combustors in a wide range of equivalence ratio. The results show that the burning time is much shorter in the combustor having radical injector.

PDA 밸브가 SI 엔진의 연소특성에 미치는 영향에 대한 실험적 연구 (An Experimental Study of the Effect of PDA valve on the Combustion Characteristics of the Spark Ignition Engine)

  • 김대열;한영출
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.104-112
    • /
    • 2004
  • The Swirl is one of the important parameters that effects the characteristics of combustion. PDA valve has been developed to satisfy two requirements of achieving sufficient swirl generation for improving the combustion and still maintaining high volumetric efficiency. This paper presents the experimental results of the effect of PDA valve on characteristics of combustion in single cylinder spark ignition engine. As a result, the combustion stability can be greatly improved by PDA valve. The data from present study are available for design of engine as the basic data.

Cycle Simulation에 의한 가솔린기관의 성능과 배출물 예측 (The prediction of performance and emissions of a spark ignition engine by cycle simulation)

  • 이종원;정진은
    • 오토저널
    • /
    • 제5권2호
    • /
    • pp.48-55
    • /
    • 1983
  • The prediction of performance and emissions is presented for a spark ignition engine. a two zone, zero-dimensional model was employed which included thermodynamics, combustion and hear transfer, and a kinetic model employed for NOx. The model was used to analyze the processes of compression, combustion and expansion. Cylinder pressures and temperatures were calculated as a function of crankangle as well as engine performance and emissions. Predictions made with the simulation were compared with experimental data from a four cylinder spark ignition engine. Calculated pressures and, Co and Co$_{2}$ concentrations showed acceptable quantitative agreement with data. But calculated No concentrations were slightly different. A parametric study of the effect of variations in speed, combustion duration and spark timing was carried out. This simulation can be useful for design of spark ignition engines.

  • PDF

정적연소기에서의 메탄-공기 균질혼합기의 연소특성 분석 (Combustion Characteristics Analysis of Methane-Air Homogeneous Mixture in a Constant Volume Combustion Chamber)

  • 이석영;김상진;전충환
    • 한국연소학회지
    • /
    • 제13권3호
    • /
    • pp.9-16
    • /
    • 2008
  • In this study, a cylindrical constant volume combustion chamber is used to investigate the flow and combustion characteristics of methane-air homogeneous mixture under various initial charge pressure, excess air ratios and ignition times. The flame and burning speed, mean gas speed are calculated by numerical analysis to analyze the combustion characteristics. It is found that the mean gas velocity during combustion has the maximum value around 300 ms and then decreased gradually on the condition of 10000 ms, and that the combustion duration is shorten and flame speed and burning velocity have the highest value under the conditions of an excess air ratio 1.1, an initial charge pressure of 0.2 MPa and an ignition time of 300 ms in the present study. And, the initial pressure and burning speed are in inverse proportion, so that it is in agreement with Strehlow who presented that the initial pressure and burning speed are in inverse proportion when the burning speed is under 50cm/s.

  • PDF

모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구 (Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor)

  • 진유인;유경원;민성기;김홍집
    • 한국연소학회지
    • /
    • 제22권2호
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.

DME 연료의 점화 및 연소특성 해석 (Numerical Modeling for Auto-Ignition and Combustion Processes of Dimethyl Ether (DME) Fuel Sprays)

  • 이정원;류연숙;김용모
    • 한국분무공학회지
    • /
    • 제10권4호
    • /
    • pp.16-25
    • /
    • 2005
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure engine conditions. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model is utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet(RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Numerical results indicate that the RIF approach, together with the high-pressure vaporization model, successfully predicts the essential feature of ignition and spray combustion processes.

  • PDF

이상상태 분무 화염에서의 레이저 점화 및 분광 측정을 통한 피드백 제어 연구 (Simultaneous optical ignition and spectroscopy of a two-phase spray flame for feedback control System)

  • 이석환;김현우;도형록;여재익
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.215-218
    • /
    • 2015
  • Simultaneous laser ignition and spectroscopy is a scheme that enables rapid determination of the local equivalence ratio and condensed fuel concentration during a reaction in a two phase spray flame. We have conducted quantitative analysis of the LIBS signals according to the equivalence ratio, droplet size, droplet number density and droplet concentration as a part of novel feedback control strategy proposed for flame ignition and stabilization with simultaneous in situ combustion flow diagnostics. This is a desirable scheme since such real time information onboard an engine for instance can be constantly monitored and fed back to the control loop to enhance the mixing process and minimize emissions of unwanted species and potential combustion instability.

  • PDF

INFLUENCE OF THE MIXING RATIO OF DOUBLE COMPONENTIAL FUELS ON HCCI COMBUSTION

  • Sato, S.;Kweon, S.P.;Yamashita, D.;Iida, N.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.251-259
    • /
    • 2006
  • For practical application on the HCCI engine, the solution of subjects, such as control of auto-ignition timing and avoidance of knocking, is indispensable. This study focused on the technique of controlling HCCI combustion appropriately, changing the mixture ratio of two kinds of fuel. Methane and DME/n-Butane were selected as fuels. The influences, which the mixing ratio of two fuels does to ignition timing, ignition temperature, rate of heat release and oxidation reaction process, were investigated by experiment with 4-stroke HCCI engine and numerical calculation with elementary reactions.