• Title/Summary/Keyword: Ignition and combustion

Search Result 1,165, Processing Time 0.027 seconds

Unsteady Ignition in the Pulse Combustor with Counter Jet Flows (대향분출류가 있는 맥동연소기의 비정상 점화현상)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 1997
  • An analytical study has been performed to investigate the unsteady ignition characteristics of pulse combustion. In many combustion applications, strain rate of the flow can significantly affect the combustion features; ignition, extinction, and reignition. In the pulse combustion, two jets (hot combustion gases and fresh mixtures) coming from the opposite side of the combustor will collide in the combustor forming a stagnation region where the chemical reaction is suppressed by the strain rate until this becomes below the critical value. In this research, the method of large activation energy asymptotic is adopted with one step irreversible kinetics to examine the ignition response to the periodic variation of the strain rate of flow. The results show the variation of the maximum value of strain rate can determine whether the ignition or extinction occur.

  • PDF

Combustion and Emission Characteristics of Premixed Charge Compression Ignition Diesel Engine (예혼합 압축 착화 디젤 엔진의 연소 및 배기 특성)

  • Heo, Seong-Geun;Kim, Dac-Sik;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.187-192
    • /
    • 2001
  • A homogeneous premixed charge compression ignition engine is experimentally investigated for the reduction of exhaust emissions in diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentration of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC and CO emissions were increased with the increase of premixed ratio. The combustion characteristics of premixed charged diesel engine such as the power output, the rate of heat release, and the other characteristics are discussed.

  • PDF

Effect of Ignition-Energy Characteristics on the Ignition and the Combustion of a Premixed Gas (점화에너지 특성이 예혼합기의 착화와 연소에 미치는 영향)

  • 이중순;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 1996
  • In this paper, we study effect of the factors, participating in the combustion as the initial conditions, such as the flow characteristics of the mixture and the initial temperature, pressure and equivalence ratio in the chamber on the ignitability of the mixture, the combustion duration and the maximum combustion-pressure. The experiment was performed in a constant-volume combustion chamber, with turbulent flow inside, equivalent to the actual engine at TDC. The present experiment utilizes three devices which differ from each other in the distribution and the magnitude of discharge energy.

  • PDF

Study on Factors Influencing Cyclic Variations at Idle in Spark Ignition Engine (스파크 점화기관의 공회전 시 싸이클 변동에 영향을 주는 인자 고찰)

  • D.H. Kwon;Park, Y.K.;Kim, J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1249-1252
    • /
    • 2003
  • To analyse the cyclic variations in a test engine, the burn parameters are determined on a cycle-to-cycle basis through the analysis of the engine pressure data. Combustion analysis based on cylinder-pressure provides a mechanism through which a combustion researcher can understand the combustion process. The objective of this paper is to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. The burn rate analysis program was used and the burn parameters were used to determine the variations in the input parameter. In this study, the author investigated the relationship of indicated mean effective pressure, coefficient of variation of indicated mean effective pressure and burn angles, and lowest normalized value in a spark ignition engine for the cyclic variations.

  • PDF

Numerical Modeling for Auto-ignition and Combustion Process of Fuel Sprays in High-Pressure Environment (고압 분무 연소장에서 연료 분무의 자발화 및 연소 과정 해석)

  • Yu, Y.W.;Kang, S.M.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.66-71
    • /
    • 2000
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in the high-pressure engine conditions. The high-pressure vaporization model is developed to realistically simulate the spray dynamics and vaporization characteristics in high-pressure and high-temperature environment. The interaction between chemistry and turbulence is treated by employing the Representative Interactive Flamelet (RIF) Model. The detailed chemistry of 114 elementary steps and 44 chemical species is adopted for the n-heptane/air reaction. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the multiple RIFs are introduced. Numerical results indicate that the RIF approach together with the high-pressure vaporization model successfully predicts the ignition delay time and location as well as the essential features of a spray ignition and combustion processes.

  • PDF

Effects on Combustion Characteristics Induced by Ignition Timing and Shape of Passagehole in a IDI Type Constant Volume Combustion Chamber (IDI형 정적 연소기에서 점화시기 및 연락공의 형상이 연소특성에 미치는 영향)

  • 윤수한;이중순;김현지;박춘근;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.220-231
    • /
    • 1996
  • In this research, we use IDI type constant volume combustion chamber which may make up stratified combustion to construct the design back data of lean-burn engine. Some experiments are conducted by the passagehole angle in the adapter of main chamber and sub-chamber. The effects on the combustion characteristics according to the ignition timing are investigated. The used fuel is methanol prospective for alternative fuel. Fuel is injected under 10.78MPa using solenoid and accumulator. As the results of the experiment, combustion characteristics reveals that ignition timing, passagehole angle and shape greatly effects on. Lean inflammability limit is extended to 0.45 in equivalence ratio.

  • PDF

Ignition Characteristics and Combustion Gas Analysis of the Plastics Foam (발포 프라스틱의 착화특성 및 연소가스 분석)

  • 이근원;김관응
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.48-52
    • /
    • 2001
  • This study was undertaken to investigate fire risk characteristics of the plastics foam that is used an insulating materials in workplaces. The ignition characteristics and combustion gas of the plastics foam were carried out using the ISO self-Ignition tester, the Cone Calorimeter, and NES combustion analyzer. The experimental materials used were commercial samples and their composition is not disclosed by the manufacturer. As the experimental results, the self-ignition temperature of the plastics foam ranges from $410^{\circ}C$ to $510^{\circ}C$, and the flash-ignition temperature of plastics foam ranges from $370^{\circ}C$ to $450^{\circ}C$. The difference of ignition temperature on density with plastics foam type was smaller since the amount of combustible gas to ignite is not caused enough. The time to ignition of the polyethylene foam in samples of the plastics foam was shorter, and its of polyethylene foam was longer. The concentration of carbon dioxide of the polyethylene foam shows higher in samples of the plastics foam. It is found that the concentration values of carbon monoxide of the plastics foam show very fatality on people during exposure of 30 minutes in fire.

  • PDF

COMBUSTION CHARACTERISTICS OF HOMOGENEOUS CHARGED METHANE-AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • CHOI S. H.;CHO S. W.;JEONG D. S.;JEON C. H.;CHANG Y. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.323-332
    • /
    • 2005
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at the spark electrode gap and the combustion characteristics of a homogeneous charged methane-air mixture under various overall charge pressures, excess air ratios and ignition times. The flow characteristics, including the mean velocity and turbulence intensity, were analyzed with a hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer, a flame propagation image acquired by ICCD camera and exhaust emissions measured by 2-valve gas chromatography were used to investigate effects of initial pressures, excess air ratios and ignition times on the combustion characteristics. It was found that the mean velocity and turbulence intensity had the maximum value around 200-300 ms and then decreased gradually to a near-zero value after 3000 ms and that the combustion duration was shorten and the flame speed and laminar burning velocity had the highest value under the condition of an excess air ratio of 1.1, an overall charge pressure of 0.15 MPa and an ignition time of 300 ms in the present study. The $CO_2$ concentration was proportional to the ignition time and overall charge pressure, the $CO_2$ concentration was proportional to the excess air ratio, and the UHC concentration was inversely proportional to the ignition time and overall charge pressure.

Ignition Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 점화특성)

  • Moon, Il-Yoon;Moon, In-Sang;Hong, Moon-Geun;Kang, Sang-Hun;Yoo, Jae-Han;Ha, Seong-Up;Lee, Seon-Mi;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.106-109
    • /
    • 2012
  • It was designed and tested ignition that an oxidizer rich preburner for a staged combustion cycle liquid rocket engine propelled by kerosene and LOx. Operation conditions of the preburner are about 60 of OF ratio and 20 MPa of combustion pressure. Ignition characteristics were compared by propellants flowrate. As the results, the higher propellants flowrate, the shorter the ignition delay time and the higher ignition stiffness. The ignition delay time was affected by incoming the oxidizer flowrate through the refrigerative cooling channels. The oxidizer flowrate from the cooling channels decreased by inflow of combustion gas during initial ignition. The oxidizer flowrate of the cooling channels increases, it is rapid recovery by cooling effect, eventually the ignition delay time decreases.

  • PDF

Fundamental Experiments of a Compression Ignition Engine Using Gaseous Fuel (가스체 연료를 사용하는 압축착화기관에 관한 기초적 연구)

  • ;太田 幹郞
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.147-157
    • /
    • 1996
  • Natural gas is gaining more attraction as a future fuel in particular both for environmental protection and energy conservation. In order to bring about more widespread use of gaseous engines, the technology capable of achieving output and efficiency performance equivalent to that of diesel engines needs to be developed. In the present paper, the requirements of the pilot torch from pre-chamber for ensuring ignition and promoting combustion are discussed by means of taking high-speed flame photography and system can run with leaner mixture of various fuels comparing to the electric plug ignition system cause the ignition delay period ignited with the torch and the combustion period are very short in spite of changing A/F of gaseous fuels in the main chamber. However, the suitable piston-cavity design for the use of lower-hydrocarbon fuels such as propane and butane must be discussed increasingly in the mear future.