• Title/Summary/Keyword: Ignition Possibility

Search Result 95, Processing Time 0.181 seconds

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

The study on Coal Spontaneous Ignition Prevention using Safety Materials of Food and Cosmetics (식품과 화장품의 안전 소재를 이용한 석탄 자연발화 억제에 대한 연구)

  • Jun, Soo-Man;Kim, Young-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.368-376
    • /
    • 2022
  • Spontaneous ignition occurs in industrial sites or anywhere in our lives, and is a phenomenon in which a substance ignites itself without an ignition source in the atmosphere. As the rate of chemical reaction increases, the heat generated increases, and the risk of spontaneous ignition increases. In this study, safe raw materials used for food and cosmetics were mixed to prepare coal spontaneous ignition prevention agents specifically among various spontaneous ignition phenomena. The effect of suppressing spontaneous combustion of coal was confirmed through lab and field tests with low-calorie, low-grade coal from Indonesia. As a result of the outdoor field test, the ignition prevention agent manufactured in this study compared with the control group(Fire after 90 days) showed excellent ignition inhibitors for more than 120 days. In addition, CO concentration control was confirmed by comparing the concentration of carbon monoxide for 50 days at the indoor coal yard. It was confirmed that the results were better than the comparative group coal and the existing anti-firing method. In addition, the possibility of coal fire prevention agents for indoor coal farms will be applied from 2024 was confirmed by studying the environment and safety of workers' working environments through official test such as soil and water quality test, MSDS of coal fire prevention agents in consideration of working workers, water quality, and eye irritation tests.

A Study on Multi-Stage Catalytic Ignitor for Hybrid Rocket Auto Ignition (하이브리드 로켓 자동점화를 위한 다단촉매점화기에 관한 연구)

  • Choi, Woojoo;Kim, Jincheol;Kwon, Minchan;Yoo, Yeongjun;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.117-119
    • /
    • 2017
  • The multi-stage catalytic igniter for hybrid rocket auto ignition is described in this paper. After charging the catalyst and pre-heating the first stage, the $N_2O$ was supplied at the first stage with the low mass flow rate, and then the $N_2O$ with the high flow rate was supplied into the second stage. Even though the $N_2O$ flow rate was high, it was decomposed by supplying the high temperature gas which was evolved from the $N_2O$ decomposition in the first stage. This multi-stage ignitor resulted in the decrease of the ignition time in comparison with the previous ignitor, and confirmed the possibility of $N_2O$ decomposition with the high flow rate using the multi-stage catalytic-ignition system.

  • PDF

Novel Ramjet Propulsion System with H2O2-Kerosene Rocket as an Initial Accelerator (H2O2-케로신 로켓을 초기 가속장치로 갖는 새로운 램젯 추진기관)

  • Park, Geun-Hong;Lim, Ha-Young;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • New concept ramjet propulsion system with liquid bipropellant rocket using "Green Propellant" hydrogen peroxide for launch stage is proposed. In this novel concept, hydrogen peroxide gas generator produces hot oxygen at launch stage and kerosene injects to this jet in combustor. For basic study of this new concept ramjet system, investigation of auto-ignition characteristics and combustion of decomposed hydrogen peroxide and kerosene was conducted. In various test cases, auto-ignition and stable combustion was verified. The combustion temperature of 400°C and Fuel/Oxidizer mixture ratio of 0.6 were the limit of auto ignition. Through the experiment results, the possibility of novel concept combined propulsion system using hydrogen peroxide gas generator is ascertained.

A Study on the Explosion Hazard by Spark Discharge of the Lithium-Ion Battery (리튬이온전지의 불꽃방전에 의한 폭발위험성에 관한 연구)

  • Lee, Chun-Ha;Jee, Seung-Wook;Kim, Shi-Kuk
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.14-20
    • /
    • 2010
  • This paper was studied on the explosion hazard by spark discharge of the lithium-ion battery. The experimental samples were chosen lithium-ion battery(general, notebook) which were used for source of portable equipment. The IEC(International Electrotechnical Commission) type spark ignition test apparatus and experimental gases such as methane, propane, ethylene or hydrogen were used for explosiveness test. It was confirmed through the experiment that the explosion hazard by spark discharge. Also, it was used thermal imager for confirm that spontaneous ignition possibility by short-circuit. As the result, this paper verified that lithium-ion battery should be used and designed by special attention safety in the hazardous zone which is existed explosiveness gas.

DME and Diesel HCCI Combustion Characteristics (DME와 Diesel의 HCCI 연소특성 비교)

  • Lee, Joo-Kwang;Kook, Sang-Hoon;Park, Cheol-Woong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.231-236
    • /
    • 2003
  • HCCI(Homogeneous Charge Compression Ignition) combustion is an advanced combustion process explained as a homogeneously premixed charge of a fuel where air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Particulate matters (PM) could be also reduced by the homogeneous combustion and no fuel-rich zones. Injection timing is extremely advanced to achieve homogeneous charge where a diesel fuel could not be vaporized sufficiently due to low pressure and low temperature condition. Also the over-penetration could be a severe problem. The small injection angle and multi-hole injectors were applied to solve these problems. Dimethyl ether (DME) as an altenative fuel was also applied to relive the bad vaporization problem associated with early injection of diesel fuel. Neat DME has a very high cetane rating and high vapor pressure. Contained oxygen reduces soot during the combustion. Experimental result shows DME can be easily operated in an HCCI engine. PM shows almost zero value and NOx is reduced more than 90% compared to direct-injection diesel engine operating mode but problem of early ignition needs more investigation.

  • PDF

A Study on Ignition and Fire Risks of Electric Heat Wire (전기적 열선의 발화 및 화재 위험성에 관한 연구)

  • Min, Se-hong;Song, Byeong-jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.113-121
    • /
    • 2015
  • This study aims to examine the risk of electrical fire in places where electric heat wires are used. In general, the use of electric heating wires is becoming more common and prevalent in a bid to prevent increasing damage caused by freezing and bursting in residential water pipes, factory pipes and irrigation pipes in vinyl greenhouse and a variety of heat wire products are available in market with legal safety requirements imposed on them. However, the widespread use of anti-freezing burst heat wire products has caused increasing incidents of fire, which often fail to be incorporated into statistics due to quick onsite extinguishing and insignificant damage although damage is gradually on the rise. Against this backdrop, this study aims to look into the possibility of ignition caused by electric heat wires and the mechanism of how it turns into catching fire through overheat and short circuit tests for anti-freezing burst electrical heat wires (hereinafter called the 'heat wire') and expects to serve as the basis for further observations and analyses on the cause of fire and the process of ignition in a scientific manner.

A Study on Fire Analysis According to Temperature Characteristics of an Incandescent Electric Lamp at 220V/100W (220V/100W 백열전구의 온도특성에 따른 화재분석에 관한 연구)

  • Shong, Kil-Mok;Han, Woon-Ki;Kim, Young-Seok;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.43-49
    • /
    • 2006
  • In this paper, we are studied on the temperature characteristics and fire progress of an incandescent electric lamp at 220V/100W. In the case of stationary state, the ignition possibility of the incandescent electric lamp due to the heat generation was low because the temperature was measured at $161.9^{\circ}C$ the temperature was increased at $538.1^{\circ}C$ in the airtight chamber, but it does not generated the fire because the oxygen was not exist in the airtight chamber. When the lamp is broken, the filament of lamp was melted in the air. The gas of lamp interior spurted to the weakest part by external flame. Thus, the incandescent electric lamp is high possibility of fire when oxygens from airtight space. Also, it is known that the possibility of ignition is very high if combustion materials(sawdust) exists on surrounding. These experimental results will be utilized for the data in the investigation electrical fire cause.

Time to ignition analysis of AP composite propellant induced by thermal loading (열 하중에 의한 AP 추진제의 발화특성 연구)

  • Kim, Ki-Hong;Lee, Kyung-Cheol;Gwak, Min-Cheol;Kim, Yong-Hyeon;Doh, Young-Dae;Kim, Chang-Kee;Yoo, Ji-Chang;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.207-210
    • /
    • 2009
  • The AP/HTPB composite propellant is a common choice for solid rocket propulsion. The externally heated rocket via fires, for instance, can cause the energetic substance to ignite, and this may lead to a thermal runaway event marked by a severe explosion. In order to develop preventive measures to reduce the possibility of such accidents in propulsion systems, we investigate the ignition and initiation properties of AP/HTPB propellant.

  • PDF

A Study on Authoritativeness of Electric Fire by Activating of Fire Damaged MCCB (소손된 배선용 차단기 동작상태에 의한 전기화재 규명의 신뢰성에 관한 연구)

  • Lee, Jong-Hwa;Mun, Yong-Soo;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • In the fire there are fusion signs and damage by fire, and insulation aging and carbonization of the electric wiring in the ignition spot because of special characteristic of the appliance in the electricity fire. Because of the physical factor applied in the damage of fire, the decision of ignition spot by eye investigation is insufficient. In this paper, the cause of electricity fire is researched. The focus is on the operation state of operated MCCB(Molded Case Circuit Breaker) at the time of electricity fire. Through grasping the operation principle of MCCB and the experiment, the state of MCCB after fire suppression is discriminated. The distinction possibility on the exist of electricity fire is proposed.