• Title/Summary/Keyword: Ieee 802.15.4

Search Result 666, Processing Time 0.026 seconds

A Study on IEEE 802.15.4 for wireless Communication of Data in the Factory Automation System (공장자동화시스템에서 데이터 송수신의 무선화를 위한 IEEE 802.15.4에 관한 연구)

  • Lee, Hye-Rim;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.238-243
    • /
    • 2009
  • Now, the production process systems are largely based on automatic system using the wired network. The production process systems using wired network has disadvantage that it is expensive when the installed and replaced equipment. The each equipment happens to repair cost for control and management in production processes. And the replaced equipment has also the additional expense and breaks production process. These problems are solved through wireless communication between the industrial equipments. So, we propose wireless production process system based on IEEE 802.15.4 technology. It solves a complicated space and stops by replaced equipment in the factory. Then we simulated and analyzed IEEE 802.15.4 for Industrial Equipment based on Wireless Network.

  • PDF

Improvement of IEEE 802.15.4b LR-WAPN Frequency Offset with Multiple Differential Filter (다중 차분 필터에 의한 IEEE 802.15.4b LR-WPAN 주파수 옵셋의 개선)

  • Cheng, Cha-Keon;Kang, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.10-17
    • /
    • 2009
  • This paper analyze the effect of frequency offset for the IEEE 802.15.4b LR-WPAN(Low-Rate Wireless Personal Area Network) with 915MHz bandwidth noncoherent DSSS O-QPSK based receiver system, and presents a compensation method with addition of differential filter to the system for compensation of frequency offset problem. DSSS PSSS-ASK and DSSS O-QPSK modulation techniques are accepted within the regularization of IEEE 802.15.4b. These new method can obtain 250kbps transmission rate. The DSSS O-QPSK modulation method that is used in this paper has no BER variation below 40ppm(frequency offset 36.6kHz), but if the offset frequency become high above 40ppm, then the system cannot have stable receiving condition due to worse BER. To solve this problem, we present a more stabilized receiver system at maximum frequency offset ${\pm}80ppm$ using MDDF unti a correlator of DSSS O-QPSK modulator. Moreover computer simulation results will be presented to evaluate the performance of the proposed algorithm unde various AWGN and frequency offset environment.

Implementation of IEEE 802.15.4a Software Stack for Ranging Accuracy Based on SDS-TWR (SDS-TWR 기반의 거리측정 정확도를 위한 IEEE 802.15.4a 소프트웨어 스택 구현)

  • Yoo, Joonhyuk;Kim, Hiecheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.17-24
    • /
    • 2013
  • The localization accuracy in wireless sensor networks using ranging-based localization algorithms is greatly influenced by the ranging accuracy. Software implementation of HAL(Hardware Abstraction Layer) and MAC(Medium Access Layer) should seamlessly deliver the raw performance of ranging-based localization provided by hardware capability fully to the applications without degrading the raw performance. This paper presents the design and implementation of the software stack for IEEE 802.15.4a which supports normal ranging mode of the Nanotron's NA5TR1 RF chip. The experiment results shows that average ranging error rate with our implementation is 24.5% for the normal mode of the SDS-TWR ranging scheme.

Channel Allocation Algorithm for coexistence of IEEE 802.11b and IEEE 802.15.4 over fading channel (페이딩 채널에서 IEEE 802.11b의 간섭에 의한 IEEE 802.15.4의 공존 성능 및 채널 선택 방법)

  • Lee, Sung-Jin;Lee, Sang-Hoon;Kim, Yeon-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.243-244
    • /
    • 2008
  • 센서 네트워크는 그 특성 상 에너지 제약이 심하며, 최근에는 움직이는 대상에 deploy이 되어 mobile 환경에서의 연구가 활발히 진행되고 있다. Mobile 센서 네트워크의 자원 최적 할당을 위해 논문에서는 WPAN과 같은 채널 대역을 쓰는 IEEE 802.11과 공존 문제에 대해서 다루고 이런 상황에서 간섭을 회피하고 QoS를 높이기 위한 채널 선택 방법에 대해 연구하였다. 본 방식의 channel allocation 알고리즘을 사용하면 효과적으로 WPAN에서 WLAN의 interference를 피할수 있게 된다.

  • PDF

Lightweight Packet Authentication for Access Control in IEEE 802.11 (IEEE 802.11에서의 접근 제어를 위한 Lightweight 패킷 인증)

  • Lee, Keun-Soon;Kim, Hyo-Jin;Song, Joo-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.4
    • /
    • pp.29-38
    • /
    • 2005
  • Because IEEE 802.11 has several security vulnerabilities, IEEE 802.11i was proposed and accepted. But IEEE 802.11i has much overhead for most of users for the web surfing. Besides not only node the authentication but also the packet authentication is needed to communicate. Although IEEE 802.11i uses TKIP(Temporal Key integrity Protocol) and CCMP(CTR with CBC-MAC Protocol), they have a lot of overheads. In this paper, Lightweight Packet Authentication(LIPA) is proposed. LIPA has less overhead and short delay so that it can be affordable for simple web-surfing which does not need stronger security. After comparing performances of LIPA with those of TKIP and CCMP, LIPA is more efficient than other schemes for transmitting packets.

Selective Unacknowledged Transmission in IEEE 802.15.4 Considering Energy Efficiency (IEEE 802.15.4에서 에너지 효율성을 고려한 선택적 Unacknowledged 전송)

  • Yang, Hyun;Park, Tan-Se;Park, Chang-Yun;Jung, Chung-Il
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.717-721
    • /
    • 2010
  • In general, wireless MAC uses the ACK for reliability. Meanwhile, in wireless sensor network, data is delivered periodically and redundantly. In these situations, every ACK transmission causes the reliability flexible applications to waste some energy. IEEE 802.15.4 developed for energy efficiency has the option of using ACK or not, but there are no researches exploiting this peculiarity. In this paper, we proposed the selective unacknowledged transmission satisfying some requirements (e.g., end-to-end delivery) by removing the ACK when frames are delivered well and using the ACK when frames are delivered poorly. Also, we performed several evaluations exploiting the NS2 simulator.

Implementation of Industrial Wireless Network Based on IEEE 802.15.4e for Real-Time Control System (실시간 제어 시스템을 위한 IEEE 802.15.4e 기반의 산업용 무선 네트워크 구현)

  • Lee, Wonhee;Yoo, Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.291-295
    • /
    • 2014
  • This paper presents the implementation of industrial wireless network for real-time control system and the performance evaluation on the implemented system. We propose the hybrid network architecture of wired EtherCAT and wireless 802.15.4e. For performance evaluation, we use the reference model of inverse pendulum system. Through the performance evaluation on our testbed system, it is verified that our proposed system can be applied to industrial real-time control system.

Device Security Bootstrapping Mechanism on the IEEE 802.15.4-Based LoWPAN (IEEE 802.15.4 기반 LoWPAN에서의 디바이스 보안 설정 메커니즘)

  • Lee, Jong-Hoon;Park, Chang-seop
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1561-1569
    • /
    • 2016
  • As the use of the sensor device increases in IoT environment, the need for device security is becoming more and more important When a sensor device is deployed in IEEE 802.15.4-based LoWPAN, it has to perform the join operation with PAN Coordinator and the binding operation with another device. In the join and binding process, authentication and key distribution of the device are performed using the pre-distributed network key or certificate. However, the network key used in the conventional method has problems that it's role is limited to the group authentication and individual identification is not applied in certificate issuing. In this paper, we propose a secure join and binding protocol in LoWPAN environment that solves the problems of pre-distributed network key.

Automatic Beacon Alignment Schemes Based on Short Address for WPANs (WPAN망에서의 Short Address 값을 이용한 자동 비컨 프레임 정렬 방법)

  • Jeon, Jong-Keun;Yoon, Chong-Ho;Kim, Se-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.101-108
    • /
    • 2007
  • There nay be collisions among beacons from several full function devices in IEEE 802.15.4 sensor networks. These collision of beacons may cause devices to lose time synchronization, and thus be unable to association. To solve this problem, the IEEE 802.15.4b defines a new Post Beacon Period(PBP), but it does not still alleviate the beacon collision problem. In this paper, we propose two automatic beacon alignment schemes that a node itself can decide its beacon start time using its short address that has been assigned during association. We also simulate and investigate our proposed automatic beacon collision avoidance schemes using NS-2 simulator.

A Hardwired Location-Aware Engine based on Weighted Maximum Likelihood Estimation for IoT Network (IoT Network에서 위치 인식을 위한 가중치 방식의 최대우도방법을 이용한 하드웨어 위치인식엔진 개발 연구)

  • Kim, Dong-Sun;Park, Hyun-moon;Hwang, Tae-ho;Won, Tae-ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.32-40
    • /
    • 2016
  • IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Because of low cost and low power communication for IoT communication, it requires the highest optimization level in the implementation. Recently, the studies of location aware algorithm based on IEEE802.15.4 standard has been achieved. Location estimation is performed basically in equal consideration of reference node information and blind node information. However, an error is not calculated in this algorithm despite the fact that the coordinates of the estimated location of the blind node include an error. In this paper, we enhanced a conventual maximum likelihood estimation using weighted coefficient and implement the hardwired location aware engine for small code size and low power consumption. On the field test using test-beds, the suggested hardware based location awareness method results better accuracy by 10 percents and reduces both calculation and memory access by 30 percents, which improves the systems power consumption.