• 제목/요약/키워드: Idling

검색결과 142건 처리시간 0.021초

튜너 내장 자동차 조향호스의 해석 모델과 실용적 응용 (On the Analytical Model of Automotive Steering Hoses Containing Tuner and Its Practical Application)

  • 이재천;오상흔
    • 유공압시스템학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2009
  • This study presents an analytical model of an automotive steering hose containing tuner(flexible spiral metal tube) to reduce the ripple pressure induced by steering vane pump. The double-wall side branch composed in a steering hose containing tuner was analogically considered as a filter in a conduit. Specialized test equipment was manufactured for the estimation of speed of sound in a conduit and measurement of amplitude ratio between the propagated ripple pressures of inlet and outlet of the steering hose. Experimental data of entire frequency ranges can be obtained through the test once in short time. The results of three points' measurement method and cross-correlation method to estimate the speeds of sound in a hose, tuner, and side branch respectively reveal that cross-correlation method can be used practically. The results of simulation and experiment were so close, especially in the range of engine idling speed, that the proposed analytical model in this study was validated. Sensitivity analyses and experiments show that longer tuner is preferable, and that the positive-positive composition of the steering hoses containing tuner is superior to others to attenuate ripple pressure.

  • PDF

확장 나무성장 그래프를 이용한 시스템 온 칩의 테스트 스케줄링 알고리듬 (Test Scheduling Algorithm of System-on-a-Chip Using Extended Tree Growing Graph)

  • 박진성;이재민
    • 대한전자공학회논문지SD
    • /
    • 제41권3호
    • /
    • pp.93-100
    • /
    • 2004
  • 시스템 온 칩의 테스트 스케줄링은 제한된 전력 사용량 내에서 테스트 시간을 최소화하기 위한 방법들 가운데 하나로서 매우 중요하다. 본 논문에서는 테스트 자원들을 선택하여 그룹화하고 코어 기반 시스템 온 칩 전체 전력소비량을 고려하면서 테스트 시간과 전력소모량의 곱의 크기에 기초하여 이들을 배열하여 스케줄링 하는 휴리스틱 알고리듬을 제안한다. 전력소모량은 최대이면서 제한된 전력 소모량을 초과하지 않는 테스트 자원 그룹을 먼저 선택하고 테스트 자원 그룹 내 요소들의 테스트 시작 위치를 테스트 공간의 초기 위치에 배치하여 테스트 자원들의 낭비시간을 최소화한다. ITC02 벤치마크 회로를 사용한 실험을 통해 알고리듬의 유효성을 보인다.

전류검출 방식의 심정 펌프 센서리스형 다기능 컨트롤러 개발 (Development of a Sensorless Deep Well Pump Multi-function Controller using Current Detection Method)

  • 이인재;바스넷 버룬;천현준;방준호
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1149-1154
    • /
    • 2017
  • In this paper, we propose a sensorless multi-function controller applicable for deep well water pumps using current detection method. The proposed system overcomes various drawbacks of existing sensored system and additional features like Over current protection function due to overload, Under current protection function for idling at low water level and Relay function for starting single phase motors and acts as a level indicator to detect water lever in real time by the current detection method. A prototype of the multi-function controller system is designed and all of its functions are tested in the laboratory. The application of the proposed controller ensures reduction in the power consumption and maintenance cost in the facilities like water and septic tanks, drainage and waste water system, oil and chemical tanks where deep well pumps are used.

V8 엔진을 탑재한 차량의 아이들링 시의 음질 개선 (An Improvement in Idle Sound Quality of a V8 engine)

  • 서인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.193-198
    • /
    • 2004
  • In order to keep the market competitiveness, it is desirable for automotive manufacturer to meet the customer's various aspects of requirements. The overall NVH (Noise, Vibration, and Harshness) performance has been an important measure when evaluating overall vehicle performance, product quality, and enhancing customers' loyalty to the product. The noise and vibration, while the engine is idling, has been brought particular attention to the drivers and passengers, because they encounter the operation conditions quite frequently without other masking noise sources: wind noise, road noise, and even powertrain radiated noise at higher speed driving. The specific noise, defined as 'CHIT' noise, has been identified as a potential customer issue, from the Pickup Truck with newly developed V8 powertrain. This paper describes the definition of the noise, identifying the potential sources, and noise radiation mechanisms, based on series of powertrain and vehicle test and verification processes. Then, based on the root-cause identified, the design change has been proposed and validated with several vehicles in order to have a complete satisfaction of the customer.

  • PDF

자동 Shut-off 시간 적정성 검증 방법 및 최적 시간 설정 방안 연구 (Validating Timing of Vehicle Automatic Shut-off and Study on Appropriate Shut-off Timing)

  • 양동일;최병남;박지운;유민상
    • 자동차안전학회지
    • /
    • 제13권2호
    • /
    • pp.15-23
    • /
    • 2021
  • Even though the number of CO poisoning casualties caused by unintended idling for the vehicles equipped with keyless ignition systems is more than 70, the problem still remains unsolved and became social issue in the US, and Senates introduced the bill which urges NHSTA to make regulation for this accordingly. To meet market safety needs and the regulations, we decided to provide automatic shut-off system very soon. In this paper, we would like to describe how to validate vehicle shut-off timing including defining required tests and case selections considering vehicle condition, garage/room size and temperatures with several assumptions. We believe that safe implementation of the shut-off function is possible via this methodology and the results. As NHTSA must be interested in shut-off timing, the methodology can be enhanced and conclusions could be reflected highly in the future regulation in case we continue this study with NHTSA or any other 3-rd party institutes.

Development of DC Controller for Battery Control for Elevator Car

  • Lee, Sang-Hyun;Kim, Sangbum
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.103-111
    • /
    • 2021
  • Among transport vehicles, Special Vehicles (SVs) are seriously exposed to energy and environmental problems. In particular, elevator cars used when moving objects in high-rise buildings increase the engine's rotational speed (radian per second: RPM). At this time, when the vehicle accelerates rapidly while idling, energy consumption increases explosively along with the engine speed, and a lot of soot is generated. The purpose of this paper is to develop a bi-directional DC-DC converter for control of vehicle power and secondary battery used in an elevated ladder vehicle (EC) used in the moving industry. As a result of this paper, the performance test of the converter was conducted. The charging/discharging state of the converter was simulated using DC power supply and DC electronic load, and a performance experiment was conducted to measure the input/output power of the converter through a power meter. Through this experimental result, it was confirmed that the efficiency was more than 92% in Buck mode and Boost mode at maximum 1.2kW output.

Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model

  • Lopez, Juan P.;Hangan, Horia;El Damatty, Ashraf
    • Wind and Structures
    • /
    • 제33권6호
    • /
    • pp.437-446
    • /
    • 2021
  • As wind turbine rotors increase, the overall loads and dynamic response become an important issue. This problem is augmented by the exposure of wind turbines to severe atmospheric events with unconventional flows such as tornadoes, which need specific designs not included in standards and codes at present. An experimental study was conducted to analyze the loads induced by a tornado-like vortex (TLV) on horizontal-axis wind turbines (HAWT). A large-scale tornado simulation developed in The Wind Engineering, Energy and Environment (WindEEE) Dome at Western University in Canada, the so-called Mode B Tornado, was employed as the TLV flow acting on a rigid wind turbine model under two rotor operational conditions (idling and parked) for five radial distances. It was observed that the overall forces and moments depend on the location and orientation of the wind turbine system with respect to the tornado vortex centre, as TLV are three-dimensional flows with velocity gradients in the radial, vertical, and tangential direction. The mean bending moment at the tower base was the most important in terms of magnitude and variation in relation to the position of the HAWT with respect to the core radius of the tornado, and it was highly dependent on the rotor Tip Speed Ratio (TSR).

Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model

  • Lopez, Juan P.;Hangan, Horia;El Damatty, Ashraf
    • Wind and Structures
    • /
    • 제34권3호
    • /
    • pp.303-312
    • /
    • 2022
  • As wind turbine rotors increase, the overall loads and dynamic response become an important issue. This problem is augmented by the exposure of wind turbines to severe atmospheric events with unconventional flows such as tornadoes, which need specific designs not included in standards and codes at present. An experimental study was conducted to analyze the loads induced by a tornado-like vortex (TLV) on horizontal-axis wind turbines (HAWT). A large-scale tornado simulation developed in The Wind Engineering, Energy and Environment (WindEEE) Dome at Western University in Canada, the so-called Mode B Tornado, was employed as the TLV flow acting on a rigid wind turbine model under two rotor operational conditions (idling and parked) for five radial distances. It was observed that the overall forces and moments depend on the location and orientation of the wind turbine system with respect to the tornado vortex centre, as TLV are three-dimensional flows with velocity gradients in the radial, vertical, and tangential direction. The mean bending moment at the tower base was the most important in terms of magnitude and variation in relation to the position of the HAWT with respect to the core radius of the tornado, and it was highly dependent on the rotor Tip Speed Ratio (TSR).

A DQN-based Two-Stage Scheduling Method for Real-Time Large-Scale EVs Charging Service

  • Tianyang Li;Yingnan Han;Xiaolong Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.551-569
    • /
    • 2024
  • With the rapid development of electric vehicles (EVs) industry, EV charging service becomes more and more important. Especially, in the case of suddenly drop of air temperature or open holidays that large-scale EVs seeking for charging devices (CDs) in a short time. In such scenario, inefficient EV charging scheduling algorithm might lead to a bad service quality, for example, long queueing times for EVs and unreasonable idling time for charging devices. To deal with this issue, this paper propose a Deep-Q-Network (DQN) based two-stage scheduling method for the large-scale EVs charging service. Fine-grained states with two delicate neural networks are proposed to optimize the sequencing of EVs and charging station (CS) arrangement. Two efficient algorithms are presented to obtain the optimal EVs charging scheduling scheme for large-scale EVs charging demand. Three case studies show the superiority of our proposal, in terms of a high service quality (minimized average queuing time of EVs and maximized charging performance at both EV and CS sides) and achieve greater scheduling efficiency. The code and data are available at THE CODE AND DATA.

Development and validation of the lead-bismuth cooled reactor system code based on a fully implicit homogeneous flow model

  • Ge Li;Wang Jingxin;Fan Kun;Zhang Jie;Shan Jianqiang
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1213-1224
    • /
    • 2024
  • The liquid lead-bismuth cooled fast reactor has been in a single-phase, low-pressure, and high-temperature state for a long time during operation. Considering the requirement of calculation efficiency for long-term transient accident calculation, based on a homogeneous hydrodynamic model, one-dimensional heat conduction model, coolant flow and heat transfer model, neutron kinetics model, coolant and material properties model, this study used the fully implicit difference scheme algorithm of the convection-diffusion term to solve the basic conservation equation, to develop the transient analysis program NUSOL-LMR 2.0 for the lead-bismuth fast reactor system. The steady-state and typical design basis accidents (including reactivity introduction, loss of flow caused by main pump idling, excessive cooling, and plant power outage accidents) for the ABR have been analyzed. The results are compared with the international system analysis software ATHENA. The results indicate that the developed program can stably, accurately, and efficiently predict the transient accident response and safety characteristics of the lead-bismuth fast reactor system.