• Title/Summary/Keyword: Idle speed control

Search Result 67, Processing Time 0.024 seconds

Idle Speed Control of Automotive Engine using Fuzzy Logic (퍼지논리를 이용한 자동차 엔진의 공회전 속도 제어)

  • 장재호;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.53-62
    • /
    • 1994
  • In this paper, a fuzzy logic-based idle speed controller is designed for automotive engine with a purpose of high efficiency and low pollution. When the idle speed is low engine operation is not smooth, otherwise fuel consumption is incresed. Therefore the idle speed must be maintained as low as possible within the scope that ensures smooth operation of engine. By simulation, we show that the idle speed controller has generated a proper control signal as engine condition or enviornment varies, and also operated well for unexpected cases. Also, an engine simulator, which is used as a basic tool for controller design, is developed and utilized for reduction of development time and cost.

  • PDF

A Study on the Controller having Disturbances in Spark Ignition Engine (불꽃점화 기관에 외란에 안정한 제어기 연구)

  • 이영춘;정진호;윤여홍;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.153-156
    • /
    • 2000
  • This paper presents an PID type fuzzy based method for nohnear engine idle controller The output is a duty cycle(DC) for driving a idle speed cont개l valve(1SCV). For precise control of SI engine, the CPS sensor and coolant temperature are used. Visual C* language is used to make simulation panel for the fast and precise idle speed control. The dSPACE board and supported Control desk program is used in experiment ta the same purpose as simulation. The experimental results have a good agreement with simulation ones.

  • PDF

Idle Quality Optimization Study (공회전시 차량의 소음진동현상의 질적개선에 대한 고찰)

  • ;Norbert Wiehagen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.342-352
    • /
    • 2003
  • Idle NVH characteristics are one of the most important aspects among the vehicle performances. Vehicle developers are devoted to improve vehicle interior noise and steering wheel and seat vibrations. In order to improve the idle quality, noise and vibration transfer path should be carefully evaluated. Also, effects of various components related to the idle performance should be confirmed. A general procedure for improving the idle qualify is described in detail. The relationship among cylinder pressure characteristics, crankshaft rotational speed variation, and vehicle vibrations is also investigated. Influences of drive shaft, torque converter, air conditioning system, vehicle structure including engine mount system, and idle control parameters on the vehicle idle quality are studied. Weak points of typical vehicles on the idle qualify are identified. Some of improvement measures are proposed and verified.

  • PDF

Modeling or an Engine System for Idle Speed Control (공회전 속도제어를 위한 엔진 시스템 모델)

  • Jo, Jang-Won;Lee, Youn-Seop;Lee, Deog-Kyoo;Choi, Don;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.430-433
    • /
    • 1989
  • This paper describes dynamic engine model that is appricable to idle speed control system development. A basic linear engine model responds to throttle and load torque Inputs to provide manifold pressure and speed outputs. Transfer functions are then derived for the modified linear engine model and significant dynamic characteristics are discussed. Lastly, the strategy for controlling idle speed uses the linear optimal control theory. The linear optimal regulator was designed using a state variable and the performance Index was minimized.

  • PDF

Design of Stable Controller to Sudden A/C Disturbance (급격한 에어콘 외란에 안정한 제어기 설계)

  • 이영춘;권대규;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.106-112
    • /
    • 2000
  • The purpose of this paper is to study on the control of the engine idle speed under sudden A/C load which is one of the most severe disturbances on engines. Three types of the closed-loop controller are developed for the stable engine idle speed control. The input of the controller is an error of rpm. The output of the controller is an ISCV duty cycle. The anticipation delay is considered to deal with the delay time of the air mass in engine. The PID, Fuzzy and PID-type Fuzzy controllers with the anticipation delay have improved the engine idle speed condition more than current ECU map table under the A/C load.

  • PDF

(A study on the fuel economy in the vehicle using variable cylinder system) (가변실린더시스템을 이용한 차량의 연비향상에 관한 연구)

  • 이태표;김종부;박준훈
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.71-76
    • /
    • 2002
  • Because the driving time is increased under the low speed by rapidly increasing of vehicles, this paper is presented a new ignition control system for improvement the fuel economy, which only some of cylinders are using under the idle status or low speed and preserving the engine rpm. is applicable to effective in fuel economy. An actual hardware was made to prove this new control system. The developed variable cylinder engine concentrated the heat neat the cylinders in idle status or low speed, so there was a problem in re-ignition. It was the reason of a lot of exhaust gas, high fuel consumption and instability of engine revolution. In this paper, in order to solve above problem to show the improvement fuel economy using the new ignition control system and valve opening period at idle status of low speed.

Some Effects on AT Vehicle's Sudden Acceleration due to Stepping Motor for Compensation of Idle Speed (공회전속도 조절용 스텝모터가 AT차량의 급발진 현상에 미치는 영향)

  • Kim, Jong-Il;Cha, Jeong-Yeun;Son, Joeong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.879-885
    • /
    • 2000
  • This study is carried out to make clear the reason of occurrence of sudden acceleration incident of AT vehicle. The stepping motor is used to control the engine speed at idle by compensating the volume of air. By the way it's valve is contaminated by blow-by gas, deposit and back fire etc. This contamination could occur the load of motor at low temperature. This plays an important role in damaging the motor's coil with the motor's performance interfered. If it's coil is damaged the ISC could malfunction. If these phenomena occur, the speed of engine may increase or the engine may stall with hunting.

  • PDF

Spark Ignition Engine Speed Control Using fuzzy Control Strategy (퍼지제어방식을 이용한 SI엔진 속도제어)

  • Shin, Dong-Mok;Kim, Eung-Seok;Kim, Moon-Cheol;Min, Jong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.672-674
    • /
    • 1997
  • In this paper, we study the idle speed control of the spark ignition engine. Engine idle speed control is a difficult problem because of troublesome characteristics such as severe process nonlinearities, variable time delays, time-varying dynamics and unobservable internal system states and disturbances. We investigate the intelligent control algorithms such as neural network controller and fuzzy controller for 4-cylinder 4-stroke engine.

  • PDF

A Study on the Improvement of Combustion Stability for SI Engine at Idle Operation (SI 기관의 공회전시 연소 안정성 향상에 관한 연구)

  • Lee, J.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.259-266
    • /
    • 1998
  • In the SI engine, the improvement of combustion stability is important not only for the fuel consumption rate but also for the emission control at idling of engine. Thus the engine speed fluctuation at idle operation mainly comes from cyclic variation of combustion in the SI engine. In this syudy, the improvement of combustion stability for the SI engine at idle condition by the cooling water temperature, duty ratio of ISC, spark ignition timing as well as the reducement of the harmful exhaust gas emission was discussed.

  • PDF

A study of electronic gasoline engine control technique (전자식 가솔린 엔진의 조절 방법에 관한 연구)

  • 성낙원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.66-76
    • /
    • 1987
  • The control technique for an electronic engine is studied. For this study an IBM-PC and a throttle body fuel injection system are selected. The computer controls fuel injection, spark timing, exhaust gas recirculation and idle speed. Fuel injection is adjusted either by a feed back signal of a zirconia $O_{2}$ sensor or programmed logic for starting, deceleration, warm ing up and idle modes. When a 3-way catalytic converter is used with the electronic engine control system, CO, THC, and NOx were reduced more than 90% simultaneously.

  • PDF