• Title/Summary/Keyword: Idle Booming Noise

Search Result 2, Processing Time 0.016 seconds

Idle Quality Optimization Study (공회전시 차량의 소음진동현상의 질적개선에 대한 고찰)

  • ;Norbert Wiehagen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.342-352
    • /
    • 2003
  • Idle NVH characteristics are one of the most important aspects among the vehicle performances. Vehicle developers are devoted to improve vehicle interior noise and steering wheel and seat vibrations. In order to improve the idle quality, noise and vibration transfer path should be carefully evaluated. Also, effects of various components related to the idle performance should be confirmed. A general procedure for improving the idle qualify is described in detail. The relationship among cylinder pressure characteristics, crankshaft rotational speed variation, and vehicle vibrations is also investigated. Influences of drive shaft, torque converter, air conditioning system, vehicle structure including engine mount system, and idle control parameters on the vehicle idle quality are studied. Weak points of typical vehicles on the idle qualify are identified. Some of improvement measures are proposed and verified.

  • PDF

Reduction of Structure-borne Idle Noise with the Insertion of a Composite Body inside Vehicle Body Skeleton (차체골격내 복합체 삽입을 이용한 구조기인 아이들 소음저감)

  • Kim, Hyo-Sig;Kim, Joong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • As a matter of fact, it has been not allowed to modify the shape of a vehicle body skeleton since the technical definition for the structure was fixed and the corresponding molds were developed. By the way, if it is available to apply an alternative to reinforce the skeleton without changing its mold, it must be much flexible to improve the performance qualities relevant to not only NVH(noise, vibration and harshness) but also crash and durability. Recently, a solution of so-called composite body becomes available for the need. We present a design method to insert the composite body inside a vehicle body skeleton in order to improve a structure-borne noise at the idle condition. The algorithms, topology optimization and design sensitivity analysis, are applied to mainly search the sensitive structural sections in the body skeleton and to extract the target stiffness of the sections. Inserting the composite bodies into the sensitive portions, it is predicted to achieve the countermeasures which can compromize the design availability in terms of the idle noise and weight. According to the validation result with test vehicles, the concerned noise transfer function is reduced and the idle booming noise is resultantly improved.