• Title/Summary/Keyword: Identical image

Search Result 200, Processing Time 0.029 seconds

Change of Dose Exposure and Improvement of Image Quality by Additional Filtration in Mammography (유방촬영용장치 부가필터에 따른 선량변화 및 화질개선)

  • Cho, Woo Il;Kim, Young Kuen;Lee, Gil Dong
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.78-90
    • /
    • 2013
  • Recently, the interest on exposure to radiation is rising. The radiation exposure of mammography is higher in absorbed dose than of X-ray, therefore unnecessary exposure needs to be reduced, and higher image quality is needed. Generally, ray quality of the radiation imaging is an important factor that determines image quality and the amount of ray exposure, and they are affected by tube voltage and added filter. The X-ray energy that is exposed from mammography device is generally a continuous spectrum, which includes low energy that has minute influence on the image quality, and high energy that hinders contrast on image. Currently, molybdenum (Mo) and rhodium (Rh) are the most used added filters for mammography device, and they are used differently according to the energy region of X-ray. This study aims to find out the degree of reduction in exposure dose according to the thickness of aluminum (Al), and to study the changes in image quality and dose when the added filter plates that are made with niobium (Nb) or zirconium (Zr) are used, other than molybdenum (Mo) and rhodium (Rh), the two most used added filters that have similar atomic number and K-absorption regions as Nb and Zr. In this study, single-added filters of molybdenum (Mo), niobium (Nb), and zirconium (Zr) are used, and in some cases, Aluminum (Al) is combined with the single filters. In this case, image quality is considered to be improved depending on the type of added filters, and by using Aluminum (Al) filter together with the others, unnecessary X-ray of low energy would be absorbed, therefore the dose is expected to decrease without any influence when the concentration level becomes identical.

Image Measurement on Influence from Application of Compression Band on Intravenous Urography for Urolithiasis Patient (요로결석 환자의 경정맥 요로조영 검사 시 압박 유무에 따른 영상평가)

  • Kim, Hyeong-Gyun;Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.261-266
    • /
    • 2015
  • Intravenous urography (IVU) for urolithiasis is a radiologic examination to diagnosis stone in the ureter path using iodine contrast media, which is radioopacity material. The method includes compression on the upper iliac crest. The compression band prevents outlet of the contrast media through the bladder and enables easier movement to upper urinary tract. This usage depends on the policy of a hospital. Therefore, this study aimed to review and compare the characteristic of progress of contrast media either in compression and non-compression. The retrospective image measurement on 60 cases of intravenous pyelography was conducted at a hospital with the identical type and amount of contrast media as well as criteria for testing. Image measurement was limited to 5 minutes clip, which is optimal for progress of contrast media depending on usage of the compression band. Also, anatomical regions were set as following: "RP" is from renal pyramid to renal pelvis, "PL" is from renal pelvis to lumbar three endplate, and "IU" and "IL" for upper and lower parts from both iliac crests. Analysis has been conducted through the statistical method based on Fisher's Exact Test to find if there are differences of distribution with the anatomical regions with compression or no compression. It has been confirmed that there is no statistical significant difference as the video measurement on 30 cases of compression and non-compression group respectively resulted in P value of 0.580 from left and 0.711 from right (both 0.960). Therefore, it has been concluded that application of a compression band on an intravenous pyelography for urolithiasis patient does not meaningfully affect the progress of contrast media.

Evaluation of Scatter Reduction Effect of the Aft-Multiple-Slit (AMS) System Using MC Simulation (MC 시뮬레이션을 이용한 Aft-Multiple-Silt 시스템의 산란선 제거 효과 평가)

  • Chang, Jin-A;Suh, Tae-Suk;Jang, Doh-Yun;Jang, Hong-Seok;Kim, Si-Yong
    • Radiation Oncology Journal
    • /
    • v.28 no.4
    • /
    • pp.224-230
    • /
    • 2010
  • Purpose: We designed the aft-multiple-slit (AMS) system to reduce scatter in cone-beam computed tomography (CBCT). As a preliminary study, we performed a Monte Carlo N-Particle Transport Code (MCNP) simulation to verify the effectiveness of this system. Materials and Methods: The MCNPX code was used to build the AMS geometry. An AMS is an equi-angled arc to consider beam divergence. The scatter-reduced projection images were compared with the primary images only and the primary plus scatter radiation images with and without AMS to evaluate the effectiveness of scatter reduction. To obtain the full 2 dimensional (2D) projection image, the whole AMS system was moved to obtain closed septa of the AMS after the first image acquisition. Results: The primary radiation with and without AMS is identical to all the slit widths, but the profiles of the primary plus scattered radiation varied according to the slit widths in the 2D projection image. The average scatter reduction factors were 29%, 15%, 9%, and 8% when the slit widths were 5 mm, 10 mm, 15 mm, and 20 mm, respectively. Conclusion: We have evaluated the scatter reduction effect of the AMS in CBCT imaging using the Monte Carlo (MC) simulations. A preliminary study based on the MCNP simulations showed a mount of scatter reduction with the proposed system.

Value of Image Subtraction for the Identification of Hepatocellular Carcinoma Capsule on Gadoxetic Acid-Enhanced MRI (가도세틱산-조영증강 MRI에서 간세포암 피막 발견에 대한 영상차감기법의 진단적 가치)

  • Kim, Hyunjung;Ahn, Jhii-Hyun;Moon, Jin Sil;Cha, Seung-Whan
    • Journal of the Korean Society of Radiology
    • /
    • v.79 no.6
    • /
    • pp.340-347
    • /
    • 2018
  • Purpose: To evaluate value of image subtraction for identifying hepatocellular carcinoma (HCC) capsule on gadoxetic acid-enhanced MR images. Materials and Methods: This study involved 108 patients at risk of HCC preoperatively examined using gadoxetic acid-enhanced MRI with hepatic resection between May 2015 and February 2017. We evaluated qualities of subtraction images and presence of capsular appearance on portal venous or transitional phases conventional and subtraction images. We assessed effect of capsular appearance on subtraction images on HCC. Results: After excluding 1 patient who had treated by transarterial chemoembolization prior to surgery and 33 patients with unsatisfactory subtraction image qualities, 82 focal hepatic lesions (73 HCC, 5 non-HCC malignancies, and 4 benign) from 74 patients were analyzed. Regarding detection of capsules, sensitivity, accuracy, and area under the receiver operating characteristic curve (AUC) on subtraction images were significantly higher than those on conventional images (95.4%, 89.0%, and 0.80, respectively; p < 0.001), though specificities were same (64.7%). For diagnosis of HCC, sensitivity, accuracy, and AUC on subtraction images were significantly higher than on conventional images (82.2%, 79.3%, and 0.69, respectively; p = 0.011), though specificities were identical (55.6%). Conclusion: Portal venous or transitional phase gadoxetic acid-enhanced MRI subtraction images could improve detection of HCC capsule.

The effect of inter-pupillary distance on stereopsis (동공간 거리가 입체시 지각에 미치는 영향)

  • 감기택;이주환
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.3
    • /
    • pp.37-49
    • /
    • 2003
  • Most 3D display systems heavily depend on binocular disparity to produce 3-dimensional depth of a scene. In principle, the vergence angle of the object on fixation and binocular disparity of non-fixated objects vary with the inter-pupillary distance(IPD) of the observer. However, most stereo systems provide the identical stereo image pairs regardless of the observers' IPD, which may result in variation in the perceived depth. In this study, we manipulated the vergence angle of the fixated object and binocular disparity of the non-fixated object. The range of the individual difference in the perceived depth was found to be increased with the increase of disparity for both the fixated and non-fixated objects, and the individual difference was well fitted by the regression line of the observers' IPD. These results suggest that individual difference in the perceived depth from the identical stereo images should be greatly reduced if the stereo system calibrates the disparity of the object by the observers' IPD in generating the stereo images and the regression line found in this study might be useful in the calibrating the disparity of the images.

  • PDF

A Study on the Origin of Image-Number Theory in Cho Hoik's Yixiangshuo (조호익(曺好益) 『역상설(易象說)』의 상수학적 연원)

  • Im, Jae-kyu
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.38
    • /
    • pp.183-208
    • /
    • 2021
  • In order to examine the origin of Image-Number Theory in Cho Hoik (曺好益)'s Yixiangshuo (易象說), it is necessary to review Hu Yigui (胡一桂)'s Zhouyi Benyi Fulu Zuanzhu (周易本義附録纂注). Hu Yigui based his work on Zhu Xi's Zhouyi Benyi, he took related contents such as the Zhu Xi's writings and phrases and organized them into a fulu (附録), and he collected commentaries that matched the meaning of Zhouyi Benyi among the theories of many Confucian scholars and produced a zuanzhu (纂注). In addition to these, there are 'Yuwei (愚謂)' and 'Yuan (愚案)' which allowed him to add his own opinion. The system of Hu Yigui's Zhouyi Benyi Fulu Zuanzhu almost coincides with Cho Hoik's Yi-ological writing system. In other words, Cho Hoik appears to have written Yizhuan Bianjie (易傳辨解) and Zhouyi Shijie (周易釋解) as a fulu and zuanzhu of Zhouyi Benyi Fulu Zuanzhu. And there is Yixiangshuo which corresponds to 'Yuwei' and 'Yuan' of Zhouyi Benyi Fulu Zuanzhu. Yixiangshuo was not originally an independent Yi-ological book, but was compiled by later generations from what was recorded in the form of the head notes of Zhouyi (周易). Thus, Yixiangshuo takes almost the same form as the 'Yuwei' and 'Yuan' of Zhouyi Benyi Fulu Zuanzhu. In addition, Cho Hoik's Yixiangshuo cites many contents from 'Yuwei' and 'Yuan' of Zhouyi Benyi Fulu Zuanzhu. On the other hand, in order to examine the origin of Image-Number Theory in Cho Hoik's Yixiangshuo, the Yi-ology of Zhu Zhen (朱震) cannot be overlooked. This is true not only due to the fact that Yixiangshuo is quoting Zhu Zhen. The more significant reason is Yixiangshuo is a fundamental aspect of Zhu Zhen's Yi-ology. As demonstrated in the main body of this article, the methodology of Image-Number Theory in Yixiangshuo and its counterpart in Hanshang Yizhuan (漢上易傳) are almost identical. In conclusion, the origin of Image-Number Theory in Cho Hoik's Yixiangshuo can be found in both the Hu Yigui's Zhouyi Benyi Fulu Zuanzhu and Zhu Zhen's Hanshang Yizhuan. In particular, it can be said that its origin can be found in both the 'Yuwei' and 'Yuan' of Zhouyi Benyi Fulu Zuanzhu and the methodlogy of Image-Number Theory in Hanshang Yizhuan.

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

The dose distribution and DVH change analysis wing to effect of the patient setup error (환자 SET-UP ERROR에 따른 선량분포와 DVH 변화 분석)

  • Kim KyoungTae;Ju SangGyu;Ahn JaeHong;Park YoungHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.81-89
    • /
    • 2004
  • Introduction : The setup error due to the patient and the staff from radiation treatment as the reason which is important the treatment record could be decided is a possibility of effect. The SET-UP ERROR of the patient analyzes the effect of dose distribution and DVH from radiation treatment of the patient. Material & Methode : This test uses human phantom and when C-T scan doing, It rotated the Left direction of the human phantom and it made SET-UP ERROR , Standard plan and 3mm, 5mm, 7mm, 10mm, 15mm, 20mm with to distinguish, it made the C-T scan error. With the result, The SET-UP ERROR got each C-T image Using RTP equipment It used the plan which is used generally from clinical - Box plan, 3Dimension plan( identical angle 5beam plan) Also, ( CTV+1cm margin, CTV+0.5cm margin, CTV+0.3,cm margin = PTV) it distinguished the standard plan and each set-up error plan and The plan used a dose distribution and the DVH and it analyzed Result : The Box4 the plan and 3Dimension plan which it bites it got similar an dose distribution and DVH in 3mm, 5mm From rotation error and Rectilinear movement( $0\%{\sim}2\%$ ). Rotation error and rectilinear error 7mm, 10mm, 15mm, 20mm appeared effect it will go mad to a enough change in treatment ( $2\%{\sim}^11\%$ ) Conclusion : The diminishes the effect of the SET-UP ERROR must reduce move with tension of the patient Also, we are important accessory development and the supply that it reducing of reproducibility and the move

  • PDF

Comparison of Image Quality among Different Computed Tomography Algorithms for Metal Artifact Reduction (금속 인공물 감소를 위한 CT 알고리즘 적용에 따른 영상 화질 비교)

  • Gui-Chul Lee;Young-Joon Park;Joo-Wan Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.541-549
    • /
    • 2023
  • The aim of this study wasto conduct a quantitative analysis of CT image quality according to an algorithm designed to reduce metal artifacts induced by metal components. Ten baseline images were obtained with the standard filtered back-projection algorithm using spectral detector-based CT and CT ACR 464 phantom, and ten images were also obtained on the identical phantom with the standard filtered back-projection algorithm after inducing metal artifacts. After applying the to raw data from images with metal artifacts, ten additional images for each were obtained by applying the virtual monoenergetic algorithm. Regions of interest were set for polyethylene, bone, acrylic, air, and water located in the CT ACR 464 phantom module 1 to conduct compare the Hounsfield units for each algorithm. The algorithms were individually analyzed using root mean square error, mean absolute error, signal-to-noise ratio, peak signal-to-noise ratio, and structural similarity index to assess the overall image quality. When the Hounsfield units of each algorithm were compared, a significant difference was found between the images with different algorithms (p < .05), and large changes were observed in images using the virtual monoenergetic algorithm in all regions of interest except acrylic. Image quality analysis indices revealed that images with the metal artifact reduction algorithm had the highest resolution, but the structural similarity index was highest for images with the metal artifact reduction algorithm followed by an additional virtual monoenergetic algorithm. In terms of CT images, the metal artifact reduction algorithm was shown to be more effective than the monoenergetic algorithm at reducing metal artifacts, but to obtain quality CT images, it will be important to ascertain the advantages and differences in image qualities of the algorithms, and to apply them effectively.

Camera Imaging Lens Fabrication using Wafer-Scale UV Embossing Process

  • Jeong, Ho-Seop;Kim, Sung-Hwa;Shin, Dong-Ik;Lee, Seok-Cheon;Jin, Young-Su;Noh, Jung-Eun;Oh, Hye-Ran;Lee, Ki-Un;Song, Seok-Ho;Park, Woo-Je
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.124-129
    • /
    • 2006
  • We have developed a compact and cost-effective camera module on the basis of wafer-scale-replica processing. A multiple-layered structure of several aspheric lenses in a mobile-phone camera module is first assembled by bonding multiple glass-wafers on which 2-dimensional replica arrays of identical aspheric lenses are UV-embossed, followed by dicing the stacked wafers and packaging them with image sensor chips. This wafer-scale processing leads to at least 95% yield in mass-production, and potentially to a very slim phone with camera-module less than 2 mm in thickness. We have demonstrated a VGA camera module fabricated by the wafer-scale-replica processing with various UV-curable polymers having refractive indices between 1.4 and 1.6, and with three different glass-wafers of which both surfaces are embossed as aspheric lenses having $230{\mu}m$ sag-height and aspheric-coefficients of lens polynomials up to tenth-order. We have found that precise compensation in material shrinkage of the polymer materials is one of the most technical challenges, in orderto achieve a higher resolution in wafer-scaled lenses for mobile-phone camera modules.