• Title/Summary/Keyword: Idempotent matrix

Search Result 44, Processing Time 0.027 seconds

INVOLUTION-PRESERVING MAPS WITHOUT THE LINEARITY ASSUMPTION AND ITS APPLICATION

  • Xu, Jin-Li;Cao, Chong-Guang;Wu, Hai-Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.97-103
    • /
    • 2009
  • Suppose F is a field of characteristic not 2 and $F\;{\neq}\;Z_3$. Let $M_n(F)$ be the linear space of all $n{\times}n$ matrices over F, and let ${\Gamma}_n(F)$ be the subset of $M_n(F)$ consisting of all $n{\times}n$ involutory matrices. We denote by ${\Phi}_n(F)$ the set of all maps from $M_n(F)$ to itself satisfying A - ${\lambda}B{\in}{\Gamma}_n(F)$ if and only if ${\phi}(A)$ - ${\lambda}{\phi}(B){\in}{\Gamma}_n(F)$ for every A, $B{\in}M_n(F)$ and ${\lambda}{\in}F$. It was showed that ${\phi}{\in}{\Phi}_n(F)$ if and only if there exist an invertible matrix $P{\in}M_n(F)$ and an involutory element ${\varepsilon}$ such that either ${\phi}(A)={\varepsilon}PAP^{-1}$ for every $A{\in}M_n(F)$ or ${\phi}(A)={\varepsilon}PA^{T}P^{-1}$ for every $A{\in}M_n(F)$. As an application, the maps preserving inverses of matrces also are characterized.

  • PDF

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.

QUASI-COMMUTATIVITY RELATED TO POWERS

  • Kim, Hyun-Min;Li, Dan;Piao, Zhelin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2107-2117
    • /
    • 2017
  • We study the quasi-commutativity in relation with powers of coefficients of polynomials. In the procedure we introduce the concept of ${\pi}$-quasi-commutative ring as a generalization of quasi-commutative rings. We show first that every ${\pi}$-quasi-commutative ring is Abelian and that a locally finite Abelian ring is ${\pi}$-quasi-commutative. The role of these facts are essential to our study in this note. The structures of various sorts of ${\pi}$-quasi-commutative rings are investigated to answer the questions raised naturally in the process, in relation to the structure of Jacobson and nil radicals.

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.