• Title/Summary/Keyword: Ice thickness measurement

Search Result 14, Processing Time 0.021 seconds

Measurement of Sea Ice Thickness in the Arctic Ocean Using an Electromagnetic Induction Instrument (전자기 유도 장비를 이용한 북극해 해빙의 두께측정)

  • Jeong, Seong-Yeob;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.189-195
    • /
    • 2012
  • The ice trials of the first Korean icebreaking research vessel "ARAON" were performed at the Arctic Ocean in July-August 2010. The sea ice concentrations of Arctic Ocean were 4/10 to 10/10 and the range of sea ice thickness was roughly 1.0 to 3.5m. In this research, sea ice thickness characteristics at the old ice floes were determined from results of drill hole and apparent conductivity measurements. Especially we measured apparent conductivity using an electromagnetic induction instrument (EM31-MK2) and estimated the sea ice thickness through the empirical equation from Cold Regions Research & Engineering Laboratory, CRREL. The results of estimated sea ice thickness were compared to drill hole measurement results and then, we suggest the new empirical equation to estimate sea ice thickness of single layer type sea ice during the summer season of Arctic Ocean by curve fitting approach to these data.

A study on the measurement of ice in the Arctic region (At Svalbard and Chukchi Sea on 2010 summer) (빙해역의 빙상환경 계측에 관한 연구 (2010년 여름 Svalbard와 Chukchi Sea 근해))

  • Kim, Hyun Soo
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • The measurement of ice properties such as thickness, strength are important to know the performance of the ice breaking vessel. The measuring equipment of ice properties and methods are summarized in this paper. The actual measured data are also described. The strength of ice at Svalbard area on April 2010 is much stronger than the Chukchi Sea on August 2010. The mean strength of Svalbard is about 500 kPa and one of Chukchi Sea is 250 kPa. The first sea trial in Arctic sea using Araon was carried out in the Chukchi Sea. The power and speed was also measured to check the ship performance in ice. The speed was measured from GPS(Global Positioning System) and engine power was recorded from DPS(Dynamic Positioning system) of Araon. The design target of Araon in level ice is 3 knots in 1m thickness and 630 kPa flexible strength but mean speed in Chuckchi sea is 3.98 knots when 6.6 MW engine power, 2.4m ice thickness and 250 kPa strength. This results comes from the difference of ice types and the weak flexible strength of ice but it will be a good information to know the performance of Araon in similar ice condition.

A Measurement of Sea Ice Properties at Chukchi Borderland During the Summer (여름철 Chukchi Borderland 부근 해빙 재료특성 계측)

  • Jeong, Seong-Yeob;Choi, Gul-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • Sea ice properties have been considered a key indicator in the structural design criteria of icebreaking vessels and arctic offshore platforms to estimate design ice load and resistance for their safety management in Arctic Ocean. A measurement study of sea ice properties was conducted during July to August of 2011 with the Korean icebreaking research vessel "Araon" around Chukchi Borderland. The sea ice concentration appears to be rapidly decreasing during this cruise. Ice condition seems to be thick second-year ice and multi-year ice and then, a lot of melt ponds were observed in the surface of ice floe. Calculated flexural strength of sea ice was about 250~550kPa, ice thickness was roughly 1.3~3.0m. In this research we performed field experiment to measure ice temperature along the depth, thickness, density, salinity, brine volume ratio and crystal structure. Apparent conductivities derived with the electromagnetic induction instrument were compared to drill hole measurement results and accuracy of sea ice thickness estimation formula was discussed.

Land Surface Dynamics and Underwater Topography from the Latest DTM Extraction to Measure the Antarctica Ice Sheet Thickness

  • Atriyon Julzarika
    • Ocean and Polar Research
    • /
    • v.46 no.1
    • /
    • pp.65-82
    • /
    • 2024
  • The Antarctica ice sheet thickness is one of the important information to know the dynamics of changes in the Earth's environment. Geospatial data of the ice sheet surface, land surface and underwater topography, and vertical deformation can be used for ice sheet thickness measurement and calculation. They can be extracted from the latest DTM. The latest DTM is one of the methods and products to extract up-to-date and detailed topography based on the dynamics of the vertical deformation period. This study aims to measure the Antarctica ice sheet thickness based on land surface dynamics and underwater topography from the latest DTM extraction. The vertical accuracy of the DTM, DSM, and vertical deformation uses a 95 % (1.96σ) confidence level. The ice thickness is divided into three types of ice layers according to the reference field: ice thickness above land, ice thickness (above the sea), and ice thickness (underwater). Ice thickness above land has a volume (3,700,299.5 km3), an area (6,767,772 km2), and a total length perimeter (114,569 km). Ice thickness (above the sea) has a volume (28,103,427.8 km3), an area (13,438,789 km2), and a total perimeter length (27,199 km). Ice thickness (underwater) has a volume (1,793,778.6 km3), an area (3,223,036 km2), and a total length perimeter (46,556 km). Antarctica's ice sheet thickness results can be used for various thematic applications of the dynamics of the Earth's environment.

Effects of Ship Speed and Ice Thickness on Local Ice Loads Measured in Arctic Sea (북극해에서 계측된 국부 빙하중에 대한 선속 및 빙두께 영향)

  • Lee, Tak-Kee;Lee, Jong-Hyun;Rim, Chae-Whan;Choi, Kyungsik
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.82-87
    • /
    • 2013
  • The icebreaking research vessel ARAON conducted her second ice trial in the Arctic Ocean during the summer season of 2010. During this voyage, the local ice loads acting on the bow of the port side were measured using 14 strain gauges. The measurement was carried out during icebreaking while measuring the thickness of the ice every 10 m. The obtained strain data were converted to the equivalent stress values, and the effects of the ship speed and ice thickness on the ice load were investigated. As a result, it was found that a faster speed produced a larger stress, according to the variation in the peak values below an ice thickness condition of 1.5 m. Meanwhile, the effect of the ice thickness on the ice load was not clear.

A Study on the Speed Sea Trial on the Ice Field for Ice Breaking Research Vessel "Araon" (쇄빙연구선 "Araon"호를 활용한 빙해역 속력 시운전에 관한 연구)

  • Kim, Hyun-Soo;Lee, Chun-Ju;Jeong, Seong-Yeob;Choi, Kyung-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.421-425
    • /
    • 2011
  • To know the speed performance of "ARAON" in Arctic ice field, the measurement of ice properties which is ice thickness & strength, snow depth and free board were performed on July 2010. The measuring method of nautical signals such as heading angle, power of engine, wind & current information etc. was described in this paper. The speed sea trials in ice were performed on the four different positions with different ice properties and engine powers because the uniform level ice is not detected in the Chukchi Sea. The test field was partially constrained ice floe with hummocks and it was superposed with small broken ice pieces each other. All of the measured ice properties were compared and evaluated according to the results of sea trial. The relations between speed, ice thickness, strength and power were summarized. Consequently according to the sea trial results, the speed of ARAON is 2.78knots at the 2.49m ice thickness with 6.55MW engine power.

The Variation of Radiative Equilibrium Temperatures with the Ice Crystal Habits and Sizes in Cirrus Clouds (권운 내 빙정의 종류와 크기에 따른 복사 평형 온도 변화)

  • Jee, Joon-Bum;Lee, Won-Hak;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.427-436
    • /
    • 2010
  • The single-scattering optical properties of ice crystals in cirrus clouds by the aircraft measurement data were investigated, and the radiative equilibrium temperatures and radiative fluxes were calculated and analyzed by radiative convective model with the variations of ice crystal habits and sizes in cirrus clouds. The homogeneous cloud is assumed to be in the layer 200~260 hPa with an ice crystal content of $10gm^{-2}$ for the flux calculation. The profiles of temperature, humidity, and ozone typical of mid-latitude summer are used. The surface albedo is assumed to be 0.2 for all spectral bands and the cosine of solar zenith angles is 0.5. The result of radiative equilibrium temperature at surface was less than surface temperature of the standard atmosphere data in case of smaller effective ice crystal size and larger optical thickness. The column, aggregation and plate in 6 ice crystal habits were the most effective in positive greenhouse effect and bullet-4 was the worst in it. At the surface, the maximum difference of equilibrium temperature by 6 kinds of ice crystal habits were about 3~15 K with 30 sample aircraft measurement data.

A study on the optimum operation of model ice in Maritime & Ocean Engineering Research Institute(MOERI) (빙수조 모형빙 활용 최적화 방안 연구)

  • Kim, Hyun Soo;Lee, Chun-Ju;Jeong, Uh-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.109-115
    • /
    • 2011
  • The ice tank is important facility to check the performance of the ship and offshore in ice condition before the construction. MOERI(Maritime & Ocean Engineering Research Institute) constructed ice model basin on the end of 2010. The ice technology to know the phenomena of ice near the ship and to estimate power of the ship in model scale is the main characteristic of the ice model basin. To achieve this goal in one ice sheet, making of test plan and feasibility check of test possibility have to review in the beginning stage of the every test. This paper describes the number of maximum resistance and self propulsion test in a sheet of level ice and proposes the methodology to optimize pack ice, rubble ice, brash ice and ice ridge test in MOERI ice tank. The feasibility of free running test to know maneuvering performance in ice field and some specific idea to measuring ice thickness and ice ridge shape was proposed.

A Study on the Measurement of River Ice Thickness by Using X-band Scatterometer (X-밴드 산란계를 이용한 하천 얼음 두께 측정에 관한 연구)

  • Han, Hyang-Sun;Kim, Bum-Jun;Lee, Hoon-Yol
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this study, we setup a ground-based scatterometer using an antenna of which the center frequency is 9.5 GHz (X-band), and measured radar backscatterings from air/ice and ice/water interfaces to extract ice thickness. Both of air/ice and ice/water interfaces make strong radar backscatterings and so we can clearly identify two peaks in measured data by scatterometer. By using the distance of two peaks and refractive index of ice, we confirmed that it is possible to measure ice thickness. Field survey was performed at the downstream of Jiam River flowing into Chuncheon Lake. We measured radar backscattering from river ice along a survey path and extracted ice thickness. The ice thickness map of the downstream of Jiam River was produced by using kriging which is one of well known interpolation methods. The ice thickness was about 50 cm along the mainstream while ice was thin as 30 ~ 40 cm at a fast-flowing meander. Ice thickness was particularly thinner at some locations than that of surrounding areas even in the mainstream region of constant flow. This was because of impurities in ice or artificially formed refrozen holes after fishing. We expect that this study helps to expand utilization field of X-band SAR and airborne scatterometer system.

An Experimental Study on Generation and Measurement Method of EG/AD Model Ice at Cold Room for Improvement of Its Properties (EG/AD 모형빙 정도 향상을 위한 콜드룸에서의 생성기법 및 계측기법 연구)

  • Cho, Seong-Rak;Jeong, Seong-Yeob;Ha, Jung-Seok;Kang, Kuk-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.414-420
    • /
    • 2013
  • Generation and measurement methods of EG/AD model ice, which is used in KIOST ice model basin are investigated for improvement of its properties. Temperature of seed water, air temperature in the freezing phase and the target air temperature in the tempering phase were changed in the cold room, and the properties of model ice was measured in this conditions. We also verified a conventional measuring method of flexural strength of model ice caused a little measuring error in cold room, so that we suggested a new measuring method that must be used higher supports than double the thickness of the model ice. In this study, we improved the generation and measurement technique of EG/AD model ice, and the developed procedure at cold room can be applied to the KIOST ice model basin.