• Title/Summary/Keyword: Ice storage

Search Result 298, Processing Time 0.024 seconds

Dynamic Performance of Natural Gas Injection Valve for Heavy-Duty CNG Dual Fuel Engine (대형 CNG 혼소 엔진용 천연가스 분사밸브 동특성 연구)

  • Kim, Yong-Rae;Choi, Young
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.9-15
    • /
    • 2017
  • Natural gas fuel has known to be very promising in terms of abundancy and economic value. Therefore it is widely treated as research topics in a variety field of production, storage and utilization. Natural gas has become one of the major sources for the power generation by using internal combustion engines(ICE). Development of natural gas fuel injection device should be preceded to realize a reliable natural gas fuel supply system for a MW class power generation reciprocating ICE. In this research, an injection valve which consists of solenoid and body part with a moving plate was designed and its dynamic performance was experimented in the engine-like environment. Displacement length and diameter of an armature and diameter of a solenoid coil were tested at former study. In this research the effect of materials of solenoid core, size of main housing inlet and supply gas pressure are examined.

Stability of 5-FU and Tegafur in Biological Fluids of Rats (흰쥐 생체시료 중 5-플루오로우라실 및 테가푸르의 안정성)

  • Jang, Ji-Hyun;Park, Jong-Kook;Kang, Jin-Hyoung;Chung, Suk-Jae;Shim, Chang-Koo;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.161-168
    • /
    • 2004
  • 5-Fluorouracil (5-FU) is an antimetabolite anticancer agent active against many types of solid tumors. Tegafur (TF), a prodrug of 5-FU, is frequently used in combination with uracil as dihydropyrimidine dehydrogenase (DPD) inhibitory fluoropyrimidine. We studied the stability of 5-FU and TF in biological fluids of rats and determined their bioavailability (BA) and excretion into bile, and urine. The drug concentrations were analyzed by an HPLC method. At room temperature, there was a 14-30% decrease in the concentration of 5-FU and TF in bile, urine, and plasma specimen at 10 and $100\;{\mu}g/ml$ over 240 min. No significant difference was noted among the sample types or between two different concentrations of 10 and $100{\mu}g/ml$. The decrease in drug concentration was significantly less in samples kept on ice (6-12%) for both drugs. These data indicate that biological fluid samples containing 5-FU or TF in plasma, urine, or bile should be placed on ice during the sample collection. Following these storage guidelines, samples were collected after administration 50 mg/kg of each drug via i.v. or oral route. BA was 1.5 folds greater for TF (60%) than that of 5-FU (42%). Approximately 0.52 and 3.3% of the i.v. doses of 5-FU and TF was excreted into bile, respectively. Renal clearance of 5-FU was about 16% of its total body clearance. These results suggest that instability of 5-FU and TF in biological fluids should be considered in pharmacokinetic or pharmacogenomic studies.

Influence of Vibration on Freezing and Fermentation of Watery Kimchi (진동이 물김치의 동결과 발효에 미치는 영향)

  • Kim, Gi-Nahm;Han, Sang-Bo;Kim, Eun-Jeong;Lee, Dong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.1094-1097
    • /
    • 2007
  • Vibration at frequency of 20 Hz and 0.18 g of acceleration was applied to 600 g watery kimchi contained in a glass jar of 1 L at subfreezing temperature (-3 and $-6^{\circ}C$) and $10^{\circ}C$ in order to see its effect on freezing and fermentation behaviors, respectively. The vibration at the subfreezing temperature delayed the freezing process and contributed to maintaining small ice crystal slurry in subsequent frozen storage. The vibration at $10^{\circ}C$ accelerated the acid and carbon dioxide production from the watery kimchi, which may be beneficial in shortening ripening time and attaining fresh cool taste.

International Conference on Electroceramics 2005 (2005년도 국제 전자세라믹 학술회의)

  • 한국세라믹학회
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2005.06a
    • /
    • pp.1-112
    • /
    • 2005
  • This report is results of a research on recent R&D trends in electroceramics, mainly focusing on the papers submitted to the organizing committee of the International Conference on Electroceramics 2005 (ICE-2005) which was held at Seoul on 12-15 June 2005. About 380 electroceramics researchers attended at the ICE-2005 from 17 countries including Korea, presenting and discussing their recent results. Therefore, we can easily understand the recent research trends in the field of electroceramics by analyses of the subject and contents of the submitted papers. In addition to the analyses of the papers submitted to the ICE-2005, we also collected some informations about domestic and international research trends to help readers understand this report easily. We analysed the R&D trends on the basis of four main categories, that is, informatics electroceramics, energy and environment ceramics, processing and characterization of electroceramics, and emerging fields of electroceramics. Each main category has several sub-categories again. The informatics ceramics category includes integrated dielectrics and ferroelectrics, oxide and nitride semiconductors, photonic and optoelectronic devices, multilayer electronic ceramics and devices, microwave dielectrics and high frequency devices, and piezoelectric and MEMS applications. The energy and environment ceramics category has four sub-categories, that is, rechargable battery, hydrogen storage, fuel cells, and advanced energy conversion concepts. In the processing and characterization category, there exist domain, strain, and epitaxial dynamics and engineering sub-category, innovative processing and synthesis sub-category, nanostructured materials and nanotechnology sub- category, single crystal growth and characterization sub-category, theory and modeling sub-category. Nanocrystalline electroceramics, electroceramics for smart sensors, and bioceramics sub-categories are included to the emerging fields category. We hope that this report give an opportunity to understand the international research trend, not only to Korean ceramics researchers but also to science and technology policy researchers.

  • PDF

Low Temperature Latent Heat Storage Material of Cooling Characteristics According to Concentration of TMA (TMA 농도에 따른 저온잠열축열물질의 냉각특성)

  • Kim, Chang-Oh;Chung, Hyun-Ho;Chung, Nak-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • The ice storage system uses water for low temperature latent heat storage. However, a refrigerator capacity are increased and COP are decreased due to supercooling of water in the course of phase change from liquid to solid. This study investigates the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N$) of 20~25 wt% as a low temperature latent heat storage material. The results showed that the phase change temperature are increased and the supercooling degree and the specific heat are decreased according to the weight concentration of TMA increased. Especially, the clathrate compound containing TMA 25wt% has the average phase change temperature of $5.8^{\circ}C$ and the supercooling degree of $8.0^{\circ}C$, retention time of liquid phase for 651sec and specific heat of 3.499 kJ/kgK in the cooling process. This expressed good than different concentration of TMA cooling characteristic. Like this, to apply TMA 25wt%-water clathrate compound is determined by advantageous as the low temperature latent heat storage material.

Postmortem Degradation of Fish Muscle Proteins 1. Nature of proteolysis and bacterial contribution (어육단백질의 사후분해 1. 단백질분해의 본질과 세균기여)

  • CHUNG Jong Rak;KIM In Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.120-128
    • /
    • 1976
  • Two experiments were conducted to study the nature of protein degradation in fish muscle postmortem, first one with English sole (Paraphyrus vetulus) followed by another with rockfish (Sebastodes spp.). In the first one, proteolysis was measured by the increase of amino-N in gutted fish during storage in ice and in the homogenates prepared from fish of different ice storage during $20^{\circ}C-incubation$. In order to test the possible involvement of fish muscle a cathepsin, a portion of each homogenate sample was exposed to 0.5 Mrad of gamma radiation to destroy viable microorganisms prior to the incubation. Proteolysis was not detected until viable count reached a level above $10^7$ cells per gm fish flesh, corresponding to 31 days of ice storage. Even if fish flesh were mechanically disrupted by means of homogenization and subsequently incubated at $20^{\circ}C$, proteloysis attributable to muscle cathepsin was not detected. In the second with rockfish muscle aseptically prepared from freshly killed fish, the samples were inoculated with a proteolytic strain of fish spoilage Pseudomonad or irradiated at 0, 0.5 and 3.0 Mrad. The four samle groups were stored at $0-2^{\circ}C$ to compare the spoilage pattern of sterile and non-sterile muscle. In sterile muscle both total-N (extracted in 0.5M KCl) and amino-N $(soluble\;in\;70\%\;ethanol)$ declined slightly while the inoculated muscle showing increase in parallel with the increase of number of inoculated bacterium. The results indicate that proteolysis is a part of normal fish spoilage and the onset of proteolysis is delayed until viable count reaches its maximum level. Contribution of fish muscle cathepsin to protein degradation in white flesh fish muscle post-mortem is nil.

  • PDF

A study on the heat transfer characteristics during outward melting process of ice in a vertical cylinder (수직원통형 빙축열조내 외향용융과정시 열전달특성에 관한 연구 -작동유체의 유동방향 및 축열조 형상비에 따른 열성능 비교-)

  • Kim, D.H.;Kim, D.C.;Kim, I.G.;Kim, Y.K.;Yim, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.171-179
    • /
    • 1997
  • During the day time in summer, peak of air conditing load, and electric power management system lies under overloaded condition. The reason is the enlarged peak load value of electric power caused by increased air-cooling load in summer. To prevent load concentration during day time and overloaded condition of power management system, some energy storage methods are suggested. One of these methods is ice storage system. Water has some good properties as P.C.M.(Phase Chang Material) : Its melting point is the range of required operation temperature. It has large specific latent heat and is chemically stable compared to other organic or inorganic substances. It is cheap and easy to treat. This study represents experimental results of heat transfer characteristics of P.C.M. under the outward melting process in a vertical cylinder. We experimented with twelve combinations of conditions, i.e., three different inlet temperatures($7^{\circ}C,\;4^{\circ}C\;and\;1^{\circ}C$), two working fluid directions(upward and downward), and two aspect ratios, H/R(4 and 2). At the inlet temperature of $7^{\circ}C$ and $4^{\circ}C$, there was temperature stagnation region where the temperature of P.C.M. remains constant at $4^{\circ}C$ regardless of aspect ratio and direction of working fluid. This temperature stagnation occurs as the water, at its maximum density, flows down to the lower region. The phase change interface formed bell-shaped curve as the melting process continued. With a new set of conditions(4H/R, inlet temperature $4^{\circ}C$ and $1^{\circ}C$, downward/upwerd inlet direction), the movement of phase change interface was faster when the working flued inlet direction was downward. With the same set of conditions, melting rate and total melting energy were larger when the working fluid inlet direction was downward. The results were reversed when the other sets of conditions were applied.

  • PDF

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Physicochemical Properties of Ground Pork with Lotus Leaf Extract during Refrigerated Storage (연잎추출물 첨가가 분쇄돈육의 냉장저장 중 이화학적 품질에 미치는 영향)

  • Lee, Kyung-Soo;Kim, Ju-Nam;Jung, In-Chul
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.477-486
    • /
    • 2013
  • This study was carried out to investigate the effect of lotus leaf extract on the physicochemical characteristics of ground pork stored at $4^{\circ}C$ for 10 days. Four types of ground pork were evaluated: ice water added (T0), 3% lotus leaf extract added (T1), 7% lotus leaf extract added (T2), and 10% lotus leaf extract added (T3). The pH was increased during storage, but decreased after 10 days of storage (p<0.05). The TBARS increased with a longer storage period (p<0.05), and those of T0, T1, T2 and T3 were 0.777, 0.244, 0.185, 0.182 mg MA/kg, respectively, after 10 days of storage. The VBN content of T0 and T1 increased with a longer storage period (p<0.05), but those of T2 and T3 were not significantly changed. In the case of surface color, the $L^*$ increased with a longer storage period, and that of T0 was the highest (p<0.05). The $a^*$ decreased with a longer storage period, and the $b^*$ was the highest after 1 day of storage (p<0.05). In the case of internal color, $L^*$ was not significantly changed, and $a^*$ was decreased with a longer storage period (p<0.05). The $b^*$ increased with a longer storage period (p<0.05). Water holding capacity increased with a longer storage period, and those of T2 and T3 were the highest (p<0.05). Cooking loss decreased with a longer storage period, and those of T0 and T1 were higher than those of T2 and T3 (p<0.05). Hardness and chewiness were not significantly different with a longer storage period, or among any samples.

An Experimental Study on the Heat Transfer Characteristics to Enhance the Artificial Hydrate Formation Performance (전열특성을 이용한 가스하이드레이트 인공제조 성능향상에 대한 실험적 연구)

  • Shin, Chang-Hoon;Park, Seoung-Su;Kwon, Ok-Bae;Shin, Kwang-Sik;Choi, Yang-Mi;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.515-518
    • /
    • 2007
  • Gas hydrates are ice-like crystalline compounds that form under low temperature and elevated pressure conditions. Recently, gas hydrates present a novel means for natural gas storage and transportation with potential applications in a wide variety of areas. An important property of hydrates that makes them attractive for use in gas storage and transportation is their very high gas-to-sol id ratio. In addition to the high gas content, gas hydrates are remarkably stable. The main barrier to development of gas hydrate technology is the lack of an effective mass production method of gas hydrate in solid form. In this study, some performance comparison among several cases classified by different volume sizes of solution were carried to identify the characteristics due to the volume increment. And it is found that one of the main reasons disturbing hydrate formation is related to the lack of cooling heat transfer due to the volume increase of the solution. So, three kinds of heat transfer plates which have different shapes and cross sectional areas were made and tested for the performance comparison following to the shape and area of each plate. Finally it is clarified that the heat transfer is one of the major factors effecting hydrate formation performance and the installation of heat transfer plate can enhance the formation performance especially not in terms of the quantity but the speed.

  • PDF