• 제목/요약/키워드: IZO/Glass 박막

검색결과 16건 처리시간 0.02초

DC 마그네트론 스퍼터링을 이용한 IZO 박막의 제조와 특성 연구 (Preparation and Characterization of IZO Thin Films grown by DC Magnetron Sputtering)

  • 박창하;이학준;김현범;김동호;이건환
    • 한국표면공학회지
    • /
    • 제38권5호
    • /
    • pp.188-192
    • /
    • 2005
  • Indium zinc oxide (IZO) thin films were deposited on glass substrate by dc magnetron sputtering. The effects of oxygen flow rate and deposition temperature on electrical and optical properties of the films were investigated. With addition of small amount of oxygen gas, the characteristic properties of amorphous IZO films were improved and the specific resistivity was about $4.8{\times}10^{-4}\Omega{\cdot}cm$. Change of structural properties according to the deposition temperature was observed with XRD, SEM, and AFM. Films deposited above $300^{\circ}C$ were found to be polycrystalline. Surface roughness of the films was increased due to the formation of grains on the surface. Electrical conductivity became deteriorated for polycrystalline IZO films. Consequently, high quality IZO films could be prepared by do sputtering with $O_{2}/Ar{\simeq}0.03$ and deposition temperature in range of $150\~200^{\circ}C$; a specific resistivity of $3.4{\times}10^{-4}{\Omega}{\cdot}cm$, an optical transmission over $90\%$ at wavelength of 550 nm, and a rms value of surface roughness about $3{\AA}$.

ITO 박막의 전기저항과 광투과도 특성에 미치는 ZnO 첨가 효과 (Effects of ZnO addition on Electrical Resistivity and Optical Transmittance of ITO Thin Film)

  • 채홍철;홍주화
    • 한국전기전자재료학회논문지
    • /
    • 제20권4호
    • /
    • pp.367-373
    • /
    • 2007
  • [ $In_2O_3-ZnO(IZO)$ ] and $In_2O_3-ZnO-SnO_2(IZTO)$ thin films were prepared on EAGLE 2000 glass webs in a Ar gas by RF-Magnetron sputtering. Electrical resistivity and optical transmittance of the films were investigated. IZO, IZTO film showed excellent optical transmittance of 85 % at the visible $400{\sim}$780 nm wavelength. Electrical properties of IZO film have $6.50{\times}10^{-4}{\Omega}cm$ (95 $In_2O_3$ : 5 ZnO wt.%) and $5.20{\times}10^{-4}{\Omega}cm$ (90 : 10 wt.%), IZTO film have $8.00{\times}10^{-4}{\Omega}cm$ (90 $In_2O_3$ : 3 ZnO : 7 $SnO_2$ wt.%) and $6.50{\times}10^{-4}{\Omega}cm$ (90 : 7 : 3 wt.%). Substitution of SnO to ZnO in ITO films showed slightly lower electrical conductivity than ITO film but showed similar optical transmittance.

ITO-IZO 이종 타겟 이용한 Indium Zinc Tin Oxide(IZTO)박막의 특성 (Properties of IZTO Thin Film prepared by the Hetero-Target sputtering system)

  • 김대현;임유승;장경욱;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.439-440
    • /
    • 2008
  • Indium Zinc Tin Oxide (IZTO) thin films for transparent thin film transistor (TTFT) were deposited on glass substrate at room temperature by facing targets sputtering (FTS). The FTS system was designed to array two targets facing each other and forms the high- density plasma between. Two different kinds of targets were installed on FTS system. One is ITO ($In_2O_3$ 90wt.%, $SnO_2$ 10wt.%), the other is IZO($In_2O_3$ 90wt%, ZnO 10wt%). The conductive and optical properties of IZTO thin film is determined depending on variation of DC power and working pressure. Therefore, IZTO thin films were prepared with different DC power and working pressure. As-deposited IZTO thin films were investigated by a UV/VIS spectrometer, an X-ray diffractometer (XRD), a scanning electron microscopy (SEM), a Hall Effect measurement system. As a result, all IZTO thin films deposited on glass substrate showed over 80% of transmittance in visible range (400~800 nm) at $O_2$ gas flow rate. We could obtain IZTO thin films with the lowest resistivity $5.67\times10^{-4}$ [$\Omega{\cdot}cm$] at $O_2$ gas flow rate 0.4 [sccm).

  • PDF

상온에서 증착한 IZTO 박막의 기판 종류에 따른 특성 (Properties of IZTO Thin Film prepared by the Hetero-Target sputtering system)

  • 김대현;임유승;김상모;금민종;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.203-204
    • /
    • 2009
  • The Indium Zinc Tin Oxide (IZTO) thin films for flexible display electrode were deposited on poly carbonate (PC) and polyethersulfone(PES) and glass substrates at room temperature by facing targets sputtering (FTS). Two different kinds of targets were installed on FTS system. One is ITO ($In_2O_3$ 90 wt.%, $SnO_2$ 10 wt.%), the other is IZO ($In_2O_3$ 90 wt.%, ZnO 10 wt.%). As-deposited IZTO thin films were investigated by a UV/VIS spectrometer, an X-ray diffractometer (XRD), an atomic force microscope (AFM) and a Hall Effect measurement system. As a result, we could prepare the IZTO thin films with the resistivity of under $10^{-4}\;[{\Omega}{\cdot}cm]$ and IZTO thin films deposited on glass substrate showed an average transmittance over 80% in visible range (400~800 nm) in all IZTO thin films except in IZTO thin film deposited at $O_2$ gas flow rate of 0.1[sccm].

  • PDF

플라스틱 기판의 Outgassing이 TCO 박막의 전기적 특성에 미치는 영향 (Out Gassing from Plastic Substrates Affect on the Electrical Properties of TCO Films)

  • 김화민;지승훈
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.961-968
    • /
    • 2009
  • In this work, transparent conductive oxide(TCO) films such as $In_2O_3-SnO_2$(ITO) and $In_2O_3-ZnO$(IZO) were prepared on polyethylene naphthalene(PEN) and glass substrates by using rf-magnetron sputtering system. The TCO films deposited on PEN substrate show very poor conductivity as compared to that of the TCO films deposited on glass substrates. From the results of the residual gas analysis(RGA) test, this poor stability of plastic substrate is presumed to be caused by the deteriorated adhesion between the TCO films and the plastic substrate due to outgassing from the plastic substrate during deposition of TCO films. From our experiment, it is found that the vaporization of some defects in the plastic substrates deteriorate the adhesion of the TCO films to the plastic substrate, because the most plastic substrates containing the water vapor and/or other adsorbed particles such as organic solvents. Mixing of these gases vaporized in the sputtering process will also affect the electrical property of the deposited TCO films. Inorganic thin composite $(SiO_2)_{40}(ZnO)_{60}$ film as a gas barrier layer is coated on the PEN substrate to protecting the diffusion of vapors from the substrate, so that the TCO films with an improved quality can be obtained.

Co-sputtering 방법으로 제작한 IAZO 박막의 특성과 이를 이용하여 제작한 인광 OLED의 특성 분석 (Characteristics of phosphorescent OLED fabricated on IAZO anode grown by co-sputtering method)

  • 배정혁;김한기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.60-61
    • /
    • 2007
  • IAZO (indium aluminium zinc oxide) anode films were co-sputtered on glass substrate using a dual target DC magnetron sputtering system. For preparation of IATO films, at constant DC power of IZO (indium zinc oxide) target of 100 W, the DC power of AZO (Aluminum zinc oxide) target was varied from 0 to 100 W. To analyze electrical and optical properties of IAZO anode, Hall measurement examination and UV/V is spectrometer were performed, respectively. In addition, structure of IAZO anode film was examined by X-ray diffraction (XRD) method. Surface smoothness was investigated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). From co-sputtered IAZO anode, good conductivity($2.32{\times}10^{-4}{\Omega}.cm$) and high transparency(approximately 80%) in the visible range were obtained even at low temperature deposition. Finally, J-V-L characteristics of phosphorescent OLED with IAZO anode were studied by Keithley 2400 and compared with phosphorescent OLED with conventional ITO anode.

  • PDF