• Title/Summary/Keyword: ITSC

Search Result 8, Processing Time 0.022 seconds

Diagnosis of Inter Turn Short Circuit in 3-Phase Induction Motors Using Applied Clarke Transformation (Clarke 변환을 응용한 3상 유도전동기의 Inter Turn Short Circuit 진단)

  • Yeong-Jin Goh;Kyoung-Min Kim
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.518-523
    • /
    • 2023
  • The diagnosis of Inter Turn Short Circuits (ITSC) in induction motors is critical due to the escalating severity of faults resulting from even minor disruptions in the stator windings. However, diagnosing ITSC presents significant challenges due to similarities in noise and losses shared with 3-phase induction motors. Although artificial intelligence techniques have been explored for efficient diagnosis, practical applications heavily rely on model-based methods, necessitating further research to enhance diagnostic performance. This study proposed a diagnostic method applied the Clarke Transformation approach, focusing solely on current components while disregarding changes in rotating flux. Experimental results conducted over a 30-minute period, encompassing both normal and ITSC conditions, demonstrate the effectiveness of the proposed approach, with FAR(False Accept Rates) of 0.2% for normal-to-ITSC FRR(False Rejection Rates) and 0.26% for ITSC-to-normal FRR. These findings underscore the efficacy of the proposed approach.

Fast Cardiac CINE MRI by Iterative Truncation of Small Transformed Coefficients

  • Park, Jinho;Hong, Hye-Jin;Yang, Young-Joong;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • Purpose: A new compressed sensing technique by iterative truncation of small transformed coefficients (ITSC) is proposed for fast cardiac CINE MRI. Materials and Methods: The proposed reconstruction is composed of two processes: truncation of the small transformed coefficients in the r-f domain, and restoration of the measured data in the k-t domain. The two processes are sequentially applied iteratively until the reconstructed images converge, with the assumption that the cardiac CINE images are inherently sparse in the r-f domain. A novel sampling strategy to reduce the normalized mean square error of the reconstructed images is proposed. Results: The technique shows the least normalized mean square error among the four methods under comparison (zero filling, view sharing, k-t FOCUSS, and ITSC). Application of ITSC for multi-slice cardiac CINE imaging was tested with the number of slices of 2 to 8 in a single breath-hold, to demonstrate the clinical usefulness of the technique. Conclusion: Reconstructed images with the compression factors of 3-4 appear very close to the images without compression. Furthermore the proposed algorithm is computationally efficient and is stable without using matrix inversion during the reconstruction.

Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor

  • Qiu, Hongbo;Yu, Wenfei;Tang, Bingxia;Yang, Cunxiang;Zhao, Haiyang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1566-1574
    • /
    • 2017
  • When the inter-turn short circuit (ITSC) fault occurs, the distortion of the magnetic field is serious. The motor loss variations of each part are obvious, and the motor temperature field is also affected. In order to obtain the influence of the ITSC fault on the motor temperature distribution, firstly, the normal and the fault finite element models of the permanent magnet synchronous motor (PMSM) were established. The magnetic density distribution and the eddy current density distribution were analyzed, and the mechanism of loss change was revealed. The effects of different forms and degrees of the fault on the loss were obtained. Based on the loss analysis, the motor temperature field calculation model was established, and the motor temperature change considering the loop current was analyzed. The influence of the fault on the motor temperature distribution was revealed. The sensitivity factors that limit the motor continuous operation were obtained. Finally, the correctness of the simulation was verified by experiments. The conclusions obtained are of great significance for the fault and high temperature demagnetization of the permanent magnet analysis.

Biases in the Assessment of Left Ventricular Function by Compressed Sensing Cardiovascular Cine MRI

  • Yoon, Jong-Hyun;Kim, Pan-ki;Yang, Young-Joong;Park, Jinho;Choi, Byoung Wook;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.2
    • /
    • pp.114-124
    • /
    • 2019
  • Purpose: We investigate biases in the assessments of left ventricular function (LVF), by compressed sensing (CS)-cine magnetic resonance imaging (MRI). Materials and Methods: Cardiovascular cine images with short axis view, were obtained for 8 volunteers without CS. LVFs were assessed with subsampled data, with compression factors (CF) of 2, 3, 4, and 8. A semi-automatic segmentation program was used, for the assessment. The assessments by 3 CS methods (ITSC, FOCUSS, and view sharing (VS)), were compared to those without CS. Bland-Altman analysis and paired t-test were used, for comparison. In addition, real-time CS-cine imaging was also performed, with CF of 2, 3, 4, and 8 for the same volunteers. Assessments of LVF were similarly made, for CS data. A fixed compensation technique is suggested, to reduce the bias. Results: The assessment of LVF by CS-cine, includes bias and random noise. Bias appeared much larger than random noise. Median of end-diastolic volume (EDV) with CS-cine (ITSC or FOCUSS) appeared -1.4% to -7.1% smaller, compared to that of standard cine, depending on CF from (2 to 8). End-systolic volume (ESV) appeared +1.6% to +14.3% larger, stroke volume (SV), -2.4% to -16.4% smaller, and ejection fraction (EF), -1.1% to -9.2% smaller, with P < 0.05. Bias was reduced from -5.6% to -1.8% for EF, by compensation applied to real-time CS-cine (CF = 8). Conclusion: Loss of temporal resolution by adopting missing data from nearby cardiac frames, causes an underestimation for EDV, and an overestimation for ESV, resulting in underestimations for SV and EF. The bias is not random. Thus it should be removed or reduced for better diagnosis. A fixed compensation is suggested, to reduce bias in the assessment of LVF.

Face Detection for Interactive TV Control System in Near Infra-Red Images (인터랙티브 TV 컨트롤 시스템을 위한 근적외선 영상에서의 얼굴 검출)

  • Won, Chul-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.388-392
    • /
    • 2011
  • In this paper, a face detection method for interactive TV control system using a new feature, edge histogram feature, with a support vector machine(SVM) in the near-infrared(NIR) images is proposed. The edge histogram feature is extracted using 16-directional edge intensity and a histogram. Compared to the previous method using local binary pattern(LBP) feature, the proposed method using edge histogram feature has better performance in both smaller feature size and lower equal error rate(EER) for face detection experiments in NIR databases.

Diagnosis Method for Stator-Faults in Induction Motor using Park's Vector Pattern and Convolution Neural Network (Park's Vector 패턴과 CNN을 이용한 유도전동기 고정자 고장진단방법)

  • Goh, Yeong-Jin;Kim, Gwi-Nam;Kim, YongHyeon;Lee, Buhm;Kim, Kyoung-Min
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.883-889
    • /
    • 2020
  • In this paper, we propose a method to use PV(Park's Vector) pattern for inductive motor stator fault diagnosis using CNN(Convolution Neural Network). The conventional CNN based fault diagnosis method was performed by imaging three-phase currents, but this method was troublesome to perform normalization by artificially setting the starting point and phase of current. However, when using PV pattern, the problem of normalization could be solved because the 3-phase current shows a certain circular pattern. In addition, the proposed method is proved to be superior in the accuracy of CNN by 18.18[%] compared to the previous current data image due to the autonomic normalization.