• Title/Summary/Keyword: ITS1 sequencing

Search Result 480, Processing Time 0.029 seconds

A review of the latest research on Ganoderma boninense

  • Su-Han LEE;Su-Han LEE
    • The Korean Journal of Food & Health Convergence
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • As oil palm trees are an important economic source in many countries, particularly in Southeast Asia and Africa, the study of Ganoderma boninense is crucial for the sustainability of the oil palm industry. This study aims to understand the biology and ecology of the fungus, its pathogenesis, and the impact it has on oil palm trees. This knowledge can be used to develop management strategies to mitigate the damage caused by the fungus, such as the use of resistant varieties, chemical and biological control methods, and cultural practices. This study is to ensure the long-term productivity and sustainability of the oil palm industry. The main method of recent academic studies on this pathogen is molecular biology, with a focus on genetic analysis and functional genomics. Researchers have used techniques such as PCR, DNA sequencing, and transcriptomics to identify genes and pathways involved in pathogenesis and better understand the fungus's interactions with its host plant. Other methods used in recent studies include biochemical analysis, microscopy, and phytohormonal assays to investigate the biochemistry and physiology of the interaction between G. boninense and oil palm. This study is intended to provide implications from a new perspective by organizing and integrating studies on Ganoderma boninense.

Isolation and Identification of Fungi and Yeast Contaminated in Rice Cake (Garaetteok) (가래떡에 오염된 곰팡이와 효모의 분리 동정)

  • Jo, Ah-Hyeon;Kim, Jung-Beom
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • The purpose of this study was to analyze the hazard of fungi in Garaetteok (Korean rice cake) by isolating and identifying of fungi contaminated with Garaetteok and investigating the possibility of mycotoxin production. Garaetteok used in this study were the ones that were returned back to the manufacturers in Jeollanam-do due to the presence of foreign matters presumed to be fungi. The fungi foreign matter was collected and inoculated on Potato dextrose agar, Malt extract agar, and Czapek yeast extract agar, and then cultured at 25℃ for 7 days. The micro-structure was observed under an optical microscope for the colonies in which pure isolation was confirmed. The gene sequencing of the product of amplified PCR was analyzed using the ITS primer. Colony-1 and 2 maintained the same properties in each tray, confirming that they were purely isolated. Budding cells were observed from the Colony-1, thus, it was determined to be yeast. Colony-2 was determined to be a fungus that belongs to Fusarium spp. as fusiform conidia were observed. As a result of gene sequencing, a total of 76 cases of fungi of Fusarium spp. were found, among which Fusarium solani was the most observed cases (53 cases). From the morphological and genetic identification, Colony-2 was identified as Fusarium spp., specifically, Fusarium solani. The fungi found in Fusarium spp. produce mycotoxins such as nivalenol, zearalenone, and fumonisin, which may cause vomiting, diarrhea, and cancer. Conclusively, the results confirm the possibility of mycotoxin production by Fusarium spp. isolated from Garaetteok. Consequently, when an unknown fungus was found, it is necessary to isolate and identify the fungus, determine whether it is a mycotoxin producing species, and strengthen relative administrative measures, accordingly.

Inhibitory Effects of Aureobasidium pullulans MHAU2101 Isolated from Domestic Pear Blossom Against Fire Blight (국내 배나무 꽃에서 분리한 Aureobasidium pullulans MHAU2101의 화상병 발생 억제 효과)

  • Hyeonseok Oh;Hyo-Won Choi;Yong Hwan Lee;Seung Yeup Lee;Mi-Hyun Lee;Sang-Keun Oh
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.331-341
    • /
    • 2022
  • This study was conducted to identify yeast species isolated from domestic pear blossom through gene sequencing and analysis of morphological characteristics, and to confirm specific yeast species inhibitory effects toward fire blight in immature apples, pears, and crab apple blossoms. Yeast morphological characteristics were consistent with the known characteristics of Aureobasidium pullulans. Nucleotide sequencing of the D1/D2 region of large-subunit (LSU) 26S ribosomal DNA and the internal transcribed spacer (ITS) region confirmed its identity as A. pullulans (MHAU2101). Inoculation of immature fruits with A. pullulans MHAU2101 before exposure to Erwinia amylovora prevented fire blight symptoms in apples and pears. A. pullulans MHAU2101 treated crab apple blossoms had a significantly lower flower infection rate than untreated blossoms, revealing 64% of the potency of streptomycin. The A. pullulans MHAU2101 treated group also displayed lower E. amylovora density in both pistil and hypanthium compared to the untreated group, especially in the hypanthium. This study confirms that A. pullulans MHAU2101 isolated from domestic pear blossom can effectively suppress the onset of fire blight.

Identification and Characterization of the Causal Organism of Gummy Stem Blight in the Muskmelon (Cucumis melo L.)

  • Choi, In-Young;Choi, Jang-Nam;Choi, Dong-Chil;Sharma, Praveen Kumar;Lee, Wang-Hyu
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.166-170
    • /
    • 2010
  • Gummy stem blight is a major foliar disease of muskmelon (Cucumis melo L.). In this study, morphological characteristics and rDNA internal transcribed spacer (ITS) sequences were analyzed to identify the causal organism of this disease. Morphological examination of the Jeonbuk isolate revealed that the percentage of monoseptal conidia ranged from 0% to 10%, and the average length $\times$ width of the conidia was 70 ($\pm$ 0.96) $\times$ 32.0 ($\pm$ 0.15) ${\mu}m$ on potato dextrose agar. The BLAST analysis showed nucleotide gaps of 1/494, 2/492, and 1/478 with identities of 485/492 (98%), 492/494 (99%), 491/494 (99%), and 476/478 (99%). The similarity in sequence identity between the rDNA ITS region of the Jeonbuk isolate and other Didymella bryoniae from BLAST searches of GenBank was 100% and was 95.0% within the group. Nucleotide sequences of the rDNA ITS region from pure culture ranged from 98.2% to 99.8%. Phylogenetic analysis with related species of D. bryoniae revealed that D. bryoniae is a monophyletic group distinguishable from other Didymella spp., including Ascochyta pinodes, Mycosphaerella pinodes, M. zeae-maydis, D. pinodes, D. applanata, D. exigua, D. rabiei, D. lentis, D. fabae, and D. vitalbina. Phylogenetic analysis, based on rDNA ITS sequence, clearly distinguished D. bryoniae and Didymella spp. from the 10 other species studied. This study identified the Jeonbuk isolate to be D. bryoniae.

The Study of Modified Sequencing Batch Reactor Process for Small Advanced Wastewater Treatment (소규모 고도하수처리를 위한 변형 연속회분식공정에 관한 연구)

  • Han, Woonwoo;Kim, Kyuhyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • This study was carried out to estimate the performance of modified sequencing batch reactor (SBR) process by the application of SBR process for small advanced wastewater treatment plant. Organic, nitrogen and phosphorus were able to remove in the unit reactor by SBR process and it would be able to select the suitable operation method. The plant was operated to achieve high performance with influent control, optimum anoxic/oxic condition using intermediate aeration method, and solid (sludge) /liquid (effluent) separation by modified decanter. The optimum operating mode was 3Cycles a day and intermediate input and aeration. Under these conditions, the treatment efficiencies were good with 60% of designed flow rate and low influent quality. When the influent concentrations of BOD and CODMn were 120.4 mg/L and 95.7 mg/L, respectively. The effluent concentrations of BOD and CODMn were 6.8 mg/L and 11.0 mg/L, respectively. The average removal efficiencies of BOD and CODMn were 94.4% and 88.5%, respectively. The removal efficiencies of T-N and T-P were 69.6% and 73.6%, respectively when the average T-N and T-P concentrations were 32.2mg/L and 4.65mg/L, respectively. The T-N and T-P removal efficiencies were slightly decreased to 58.8% and 68.5%, respectively in the winter season but its were also stable efficiencies. BOD, T-N and T-P were removed by 90%. 67% and 46% respectively in the first anoxic/oxic condition, in addition to T-P was removed by 70% in the second anoxic/oxic condition. From the results, modified sequencing batch reactor (SBR) process is suitable for small advanced wastewater treatment.

  • PDF

The Workflow for Computational Analysis of Single-cell RNA-sequencing Data (단일 세포 RNA 시퀀싱 데이터에 대한 컴퓨터 분석의 작업과정)

  • Sung-Hun WOO;Byung Chul JUNG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.10-20
    • /
    • 2024
  • RNA-sequencing (RNA-seq) is a technique used for providing global patterns of transcriptomes in samples. However, it can only provide the average gene expression across cells and does not address the heterogeneity within the samples. The advances in single-cell RNA sequencing (scRNA-seq) technology have revolutionized our understanding of heterogeneity and the dynamics of gene expression at the single-cell level. For example, scRNA-seq allows us to identify the cell types in complex tissues, which can provide information regarding the alteration of the cell population by perturbations, such as genetic modification. Since its initial introduction, scRNA-seq has rapidly become popular, leading to the development of a huge number of bioinformatic tools. However, the analysis of the big dataset generated from scRNA-seq requires a general understanding of the preprocessing of the dataset and a variety of analytical techniques. Here, we present an overview of the workflow involved in analyzing the scRNA-seq dataset. First, we describe the preprocessing of the dataset, including quality control, normalization, and dimensionality reduction. Then, we introduce the downstream analysis provided with the most commonly used computational packages. This review aims to provide a workflow guideline for new researchers interested in this field.

Site-Directed Mutagenesis of Two Cysteines (155, 202) in Catechol 1,2-dioxygenase $I_1$ of Acinetobacter lwoffii K24

  • Kim, Seung-Il;Kim, Soo-Jung;Leem, Sun-Hee;Oh, Kye-Heon;Kim, Soo-Hyun;Park, Young-Mok
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.172-175
    • /
    • 2001
  • Catechol 1,2-dioxygenase $I_1$ ($CDI_1$) is the first enzyme of the $\beta$-ketoadipate pathway in Acinetobacter lowffii K24. $CDI_1$ has two cysteines (155, 202) and its enzyme activity is inhibited by the cysteine inhibitor, $AgNO_3$. Two mutants, $CDI_1$ C155V and $CDI_1$ C202V, were obtained by site-directed mutagenesis. The two mutants were overexpressed and the mutated amino acid residues (Cys$\rightarrow$Val) were characterized by peptide mapping and amino acid sequencing. Interestingly, $CDI_1$ C155V was inhibited by $AgNO_3$, whereas $CDI_1$ C202V was not inhibited. This suggests that $Cys^{202}$ is the sole inhibition site by $AgNO_3$ and is close to the active site of the enzyme. However, the results of the biochemical assay of mutated $CDI_1s$ suggest that the two cysteines are not directly involved in the activity of the catechol 1,2-dioxygenase of $CDI_1$.

  • PDF

Potential Risk of Choline Alfoscerate on Isoflurane-Induced Toxicity in Primary Human Astrocytes

  • Hyun Jung Lee;Hye Rim Cho;Minji Bang;Yeo Song Lee; Youn Jin Kim; Kyuha Chong
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.4
    • /
    • pp.418-430
    • /
    • 2024
  • Objective : Isoflurane, a widely used common inhalational anesthetic agent, can induce brain toxicity. The challenge lies in protecting neurologically compromised patients from neurotoxic anesthetics. Choline alfoscerate (L-α-Glycerophosphorylcholine, α-GPC) is recognized for its neuroprotective properties against oxidative stress and inflammation, but its optimal therapeutic window and indications are still under investigation. This study explores the impact of α-GPC on human astrocytes, the most abundant cells in the brain that protect against oxidative stress, under isoflurane exposure. Methods : This study was designed to examine changes in factors related to isoflurane-induced toxicity following α-GPC administration. Primary human astrocytes were pretreated with varying doses of α-GPC (ranging from 0.1 to 10.0 µM) for 24 hours prior to 2.5% isoflurane exposure. In vitro analysis of cell morphology, water-soluble tetrazolium salt-1 assay, quantitative real-time polymerase chain reaction, proteome profiler array, and transcriptome sequencing were conducted. Results : A significant morphological damage to human astrocytes was observed in the group that had been pretreated with 10.0 mM of α-GPC and exposed to 2.5% isoflurane. A decrease in cell viability was identified in the group pretreated with 10.0 µM of α-GPC and exposed to 2.5% isoflurane compared to the group exposed only to 2.5% isoflurane. Quantitative real-time polymerase chain reaction revealed that mRNA expression of heme-oxygenase 1 and hypoxia-inducible factor-1α, which were reduced by isoflurane, was further suppressed by 10.0 µM α-GPC pretreatment. The proteome profiler array demonstrated that α-GPC pretreatment influenced a variety of factors associated with apoptosis induced by oxidative stress. Additionally, transcriptome sequencing identified pathways significantly related to changes in isoflurane-induced toxicity caused by α-GPC pretreatment. Conclusion : The findings suggest that α-GPC pretreatment could potentially enhance the vulnerability of primary human astrocytes to isoflurane-induced toxicity by diminishing the expression of antioxidant factors, potentially leading to amplified cell damage.

Nursing Genetics in 'Postgenome' Era ('포스트 게놈' 시대에서 간호학의 과제)

  • ChoiKwon, S-Mi
    • Journal of Korean Biological Nursing Science
    • /
    • v.7 no.1
    • /
    • pp.5-14
    • /
    • 2005
  • Since the Human Genome Project(HGP) has begun in the mid 1980s, the sequencing of the human genome has been finally completed in 2001. The knowledge developed from the HGP has revolutionized how health care professionals think about patient care, mandating a new paradigm of patient care in totally inconceivable ways from the past. For instance, the patients at risk for disease can be identified early enough for intervention; the medicine can be tailored for individual patients based on their own genetic information ; the gene therapy could be a common procedure in the near future. The advancement in genetics, therefore, requires the shift of paradigm not only in nursing education, practice, but also in nursing research. It is attempted, in this article to introduce briefly the basic knowledge of genetics, the pharmacogenomics, and the overview of national genetic research initiated and organized by the Center for Functional Analysis of Human Genome in Korea. The current state of nursing genetic knowledge and its implications on nursing education, practice, and research has examined. Furthermore, the visions and the opportunities for nursing science and practice to participate in this genetic revolution were also explored.

  • PDF

Streptomyces sp. DG-2 with Anti-MRSA (Methicillin Resistant Staphylococcus aureus) Activity (항 MRSA (Methicillin Resistant Staphylococcus aureus) 활성을 나타내는 Streptomyces sp. DG-2)

  • Jeong, Seong-Yun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.49-57
    • /
    • 2017
  • We isolated marine bacterium, isolate DG-2 which produces the antibiotics against MRSA (methicillin-resistant Staphylococcus aureus). This isolate DG-2 was examined by its morphological, biochemical properties, and 16S rRNA sequencing analysis. And then, isolate DG-2 was identified to the genus Streptomyces. Therefore, this isolate was designated as Streptomyces sp. DG-2. Streptomyces sp. DG-2 grew relatively well at $25^{\circ}C$, pH 7.0, and NaCl 1.0%. For the pre-purification of the bioactive compounds, DG-2 was fermented in 30 L PPES-II medium, and the culture filtrates of DG-2 was extracted by ethyl acetate. The ethyl acetate extract of DG-2 showed the significant anti-MRSA and antibacterial activities.