• Title/Summary/Keyword: ITS and lsu rDNA

Search Result 54, Processing Time 0.025 seconds

Temporal Changes in Abundances of the Toxic Dinoflagellate Alexandrium minutum (Dinophyceae) in Chinhae Bay, Korea

  • Park, Tae-Gyu;Kang, Yang-Soon
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1331-1338
    • /
    • 2009
  • Marine dinoflagellate Alexandrium minutum producing paralytic shellfish toxins is responsible for paralytic shellfish poisoning (PSP). To investigate its temporal distributions in Chinhae Bay where PSP occurs annually, SYBR Green I based A. minutum-specific real-time PCR probe was developed on the LSU rDNA region. Assay specificity and sensitivity were tested against related species, and its specificity was further confirmed by sequencing of field-derived samples. Ten months field survey in 2008 (a total 100 surface water samples) by using the real-time PCR probe showed that A. minutum was detected at very low densities of 1-4 cells $L^{-1}$ in May and June being spring in Chinhae Bay, Korea.

Sensitive, Accurate PCR Assays for Detecting Harmful Dinoflagellate Cochlodinium polykrikoides Using a Specific Oligonucleotide Primer Set

  • Kim Chang-Hoon;Park Gi-Hong;Kim Keun-Yong
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.122-129
    • /
    • 2004
  • Harmful Cochlodinium polykrikoides is a notorious harmful algal bloom (HAB) species that is causing mass mortality of farmed fish along the Korean coast with increasing frequency. We analyzed the sequence of the large subunit (LSD) rDNA D1-D3 region of C. polykrikoides and conducted phylogenetic analyses using Bayesian inference of phylogeny and the maximum likelihood method. The molecular phylogeny showed that C. polykrikoides had the genetic relationship to Amphidinium and Gymnodinium species supported only by the relatively high posterior probabilities of Bayesian inference. Based on the LSU rDNA sequence data of diverse dinoflagellate taxa, we designed the C. polykrikoides-specific PCR primer set, CPOLY01 and CPOLY02 and developed PCR detection assays for its sensitive, accurate HAB monitoring. CPOLY01 and CPOLY02 specifically amplified C. polykrikoides and did not cross-react with any dinoflagellates tested in this study or environmental water samples. The effective annealing temperature $(T_{p})$ of CPOLY01 and CPOLY02 was $67^{\circ}C$. At this temperature, the conventional and nested PCR assays were sensitive over a wide range of C. polykrikoides cell numbers with detection limits of 0.05 and 0.0001 cells/reaction, respectively.

Two Unrecorded Endophytic Fungi Isolated from Funaria hygrometrica in Korea (표주박이끼(Funaria hygrometrica)에서 분리된 2종의 국내 미기록 내생균)

  • Choi, Hyun-Sook;Park, Hyeok;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.313-318
    • /
    • 2019
  • In the present study, we isolated endophytic fungal strains from the rhizoids of the moss Funaria hygrometrica. The isolated strains were identified based on morphological characteristics and analysis of the internal transcribed spacer (ITS) and large subunit (LSU) rDNA sequence regions. Consequently, we confirmed the presence of two endophytic fungal species, Curvularia protuberata and Didymella anserina, which have not been reported in Korea previously. Here, we describe the morphological characteristics and molecular analysis results of these fungal species.

First Report of Xenoroussoella triseptata Isolated from Soil in Korea

  • Jung-Joo Ryu;Seung-Yeol Lee;In-Kyu Kang;Leonid N. Ten;Hee-Young Jung
    • The Korean Journal of Mycology
    • /
    • v.50 no.3
    • /
    • pp.195-204
    • /
    • 2022
  • A fungal strain, designated KNUF-20-NI009, was isolated from soil collected from Gunsan-si, Jeollabuk-do, Korea. The isolate showed cultural features typical of the genus Xenoroussoella. Colonies cultivated on malt extract agar were olivaceous-brown to pale olivaceous-white at the margins, with undersides of dark olivaceous to olivaceous-brown and a white margin. The conidia, with a size range of 2.7-5.1×1.6-3.3 ㎛ ($\bar{x}=3.6\times2.6{\mu}m$, n=50), were globoid to ellipsoid in shape, hyaline when immature, becoming light brown to golden-brown when mature, and characterized by 1 or 2 guttules. Multi-locus sequence analysis based on a combined dataset of internal transcribed spacer regions (ITS), large subunit rDNA (LSU), small subunit rDNA (SSU), translation elongation factor 1-alpha (TEF1α), and RNA polymerase II largest subunit (RPB2) sequences revealed KNUF-20-NI009 to be a strain of Xenoroussoella triseptata. This is the first report of this species in Korea.

New Species of the Genus Metschnikowia Isolated from Flowers in Indonesia, Metschnikowia cibodasensis sp. nov.

  • Sjamsuridzal, Wellyzar;Oetari, Ariyanti;Nakashima, Chiharu;Kanti, Atit;Saraswati, Rasti;Widyastuti, Yantyati;Ando, Katsuhiko
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • A novel species, Metschnikowia cibodasensis, is proposed to accommodate eight strains (ID03-$0093^T$, ID03-0094, ID03-0095, ID03-0096, ID03-0097, ID03-0098, ID03-0099, and ID03-0109) isolated from flowers of Saurauia pendula, Berberis nepalensis, and Brunfelsia americana in Cibodas Botanical Garden, West Java, Indonesia. The type strain of M. cibodasensis is ID03-$0093^T$ (= NBRC $101693^T$ =UICC $Y-335^T$ = BTCC-$Y25^T$). The common features of M. cibodasensis are a spherical to ellipsoidopedunculate shaped ascus, which contains one or two needle-shaped ascospores, and lyse at maturity. Asci generally develop directly from vegetative cells but sometimes from chlamydospores. The neighbor-joining tree based on the D1/D2 domain of nuclear large subunit (nLSU) ribosomal DNA sequences strongly supports that M. cibodasensis (eight strains) and its closest teleomorphic species, M. reukaufii, are different species by a 100% bootstrap value. The type strain of M. cibodasensis, ID03-$0093^T$, differed from M. reukaufii NBRC $1679^T$ by six nt (five substitutions and one deletion) in their D1/D2 region of nLSU rDNA, and by 18 nt (five deletions, four insertions, and nine substitutions) in their internal transcribed spacer regions of rDNA, respectively. Four strains representative of M. cibodasensis (ID03-$0093^T$, ID03-0095, ID03-0096, and ID03-0099) showed a mol% G+C content of $44.05{\pm}0.25%$, whereas that of M. reukaufii NBRC $1679^T$ was 41.3%. The low value of DNA-DNA homology (5-16%) in four strains of M. cibodasensis and M. reukaufii NBRC $1679^T$ strongly supported that these strains represent a distinct species.

Rediscovery of Seven Long-Forgotten Species of Peronospora and Plasmopara (Oomycota)

  • Lee, Jae Sung;Shin, Hyeon-Dong;Choi, Young-Joon
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.331-340
    • /
    • 2020
  • The family Peronosporaceae, an obligate biotrophic group of Oomycota, causes downy mildew disease on many cultivated and ornamental plants such as beet, cucumber, grape, onion, rose, spinach, and sunflower. To investigate the diversity of Peronosporaceae species in Korea, we performed morphological analysis for dried plant herbariums with downy mildew infections by two largest genera, Peronospora and Plasmopara. As a result, it was confirmed that there are five species of Peronospora and two species of Plasmopara, which have been so far unrecorded in Korea, as well as rarely known in the world; Pl. angustiterminalis (ex Xanthium strumarium), Pl. siegesbeckiae (ex Siegesbeckia glabrescens), P. chenopodii-ambrosioidis (ex Chenopodium ambrosioides), P. chenopodii-ficifolii (ex Chenopodium ficifolium), P. clinopodii (ex Clinopodium cf. vulgare), P. elsholtziae (ex Elsholtzia ciliata), and P. lathyrina (ex Lathyrus japonicus). In addition, their phylogenetic relationship was inferred by molecular sequence analysis of ITS, LSU rDNA, and cox2 mtDNA. By rediscovering the seven missing species and barcoding their DNA sequences, this study provides valuable insights into the diversity and evolutionary studies of downy mildew pathogens.

First report of Amphidinium fijiense(Dinophyceae) from the intertidal zone of a sandy beach of Jeju Island, Korea

  • Su-Min Kang;Taehee Kim;Joon-Baek Lee;Jang-Seu Ki;Jin Ho Kim
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.497-509
    • /
    • 2022
  • A strain of Amphidinium species was established from samples collected from the intertidal zone of a sandy beach of Jeju Island, Korea. Its cells were 13.0-15.0 ㎛ in length and 10.0-13.0 ㎛ in width. Its cell shape was round or oval and dorsoventrally flat. A pyrenoid was located in the center of the cell and a nucleus was posteriorly located. Its epicone was small and left-deflecting. Its cingulum had V-shape on the ventral side, forming a ventral ridge and extending to the sulcus. Polygonal amphiesmal vesicles and ring-shaped body scales not described previous were observed on the surface of the cell. Its morphological features were consistent with those of previously described Amphidinium fijiense. Phylogeny based on ITS region and LSU rDNA sequences revealed that this Amphidinium isolate was clearly clustered with other A. fijiense strains, but separated from other Amphidinium species. These results indicate that this Amphidinium isolate is A. fijiense. This study reports its presence for the first time in the intertidal zone of a sandy beach of Jeju Island, Korea.

Identification and Pathogenicity of Neophysopella vitis Causing Rust Disease on Meliosma myriantha in Korea

  • Dong Hwan Na;Jae Sung Lee;Young-Joon Choi;Ji-Hyun Park;Hyeon-Dong Shin
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.299-303
    • /
    • 2023
  • Rust symptoms on Meliosma myriantha trees have been noticed during disease surveys in Korea since 2010, with a high disease incidence frequently surpassing 90%. The causal fungus of the rust disease was identified as Neophysopella vitis based on the morphological investigation and molecular sequence analysis of the internal transcribed spacer (ITS) and large subunit (LSU) rDNA regions. This is the first report of rust disease caused by N. vitis on M. myriantha in Korea. A pathogenicity assay proved that M. myriantha serves as the aecial host of N. vitis as spermogonia and aeciospores were produced, which can infect the two uredinial hosts, Boston ivy (Parthenocissus tricuspidata) and Virginia creeper (Parthenocissus quinquefolia).

Puccinia klugkistiana, a Rust Fungus Occurring on Cleistogenes hackelii in Korea

  • Lee, Jae-Sung;Choi, Young-Joon;Choi, In-Young;Lee, Chong-Kyu;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.49 no.2
    • /
    • pp.253-257
    • /
    • 2021
  • Rust samples at both uredinial and telial stages were collected from Cleistogenes hackelii (Poaceae) in 2017 and 2019 in Korea. Based on the morphological examination and molecular phylogenetic analyses of the internal transcribed spacer (ITS) and large subunit (LSU) rDNA, it was identified as Puccinia klugkistiana. This rust at aecial stage has previously been recorded on Ligustrum japonicum (Oleaceae) in Korea. Puccinia diplachnicola has been previously recorded on C. hackelii in Korea; however, it is believed to be unrelated to the rust collected in the present study. Conclusively, this is the first study to report P. klugkistiana occurrence on C. hackelii in Korea.

Erysiphe cornicola, a Powdery Mildew Occurring on Cornus controversa in Korea

  • In-Young Choi;Lamiya Abasova;Joon-Ho Choi;Ji-Hyun Park;Hyeon-Dong Shin
    • The Korean Journal of Mycology
    • /
    • v.51 no.1
    • /
    • pp.57-62
    • /
    • 2023
  • In Korea, Cornus controversa and C. florida are known as hosts of Erysiphe pulchra from section Microspharea of the genus Erysiphe. However, recent molecular-phylogenetic analyses on the internal transcribed spacer regions and large subunit gene of the rDNA revealed that the Erysiphe powdery mildew on C. controversa in Japan is in fact E. cornicola. To assess the taxonomic status of Erysiphe-C. controversa association in Korea, isolates collected since 1987 were investigated and consequently identified as E. cornicola based on molecular-phylogenetic analyses and new morphological traits. To our knowledge, this is the first study to confirm the presence of this powdery mildew in Korea.