• Title/Summary/Keyword: ITS장비

Search Result 1,249, Processing Time 0.028 seconds

ICT based Wireless Power Transmission System Development (ICT 기반의 무선전력전송 시스템 개발)

  • Lee, Jong-Hee;Bang, Junho;Chun, Hyun-Jun;Seo, Beom-Geun;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • Recently, wireless power transmission has attracted much interest and is the subject of much research in industry and academia. As its name implies, it is a technology which involves transferring power without wires. This paper presents the design of an ICT-based wireless power transmission system. The proposed system consists of a wireless transceiver unit and high-efficiency coil unit, which can increase both the transmission efficiency and the effective power distance. In particular, the wireless transceiver unit was designed to work with the ICT technique to enable real-time remote monitoring. Also, studies were done relating to the effect of reducing the standby power. The optimal frequency of IGBT devices used in industrial wireless power systems of 20[KHz] was utilized. The values of $23.9[{\mu}H]$ and $2.64[{\mu}F]$ were selected for L and C, respectively, through many field experiments designed to optimize the system design. In addition, an output current controlling algorithm was developed for the purpose of reducing the standby power. The results presented in this paper represent a 75[%] to 85[%] higher power transmission efficiency with a 10[%] increase in the effective power transmission distance compared with the existing systems. As a result, the proposed system exhibits a lower standby power and maintenance costs. Also, the designed wireless transceiver unit facilitates fault detection by means of user acquired data with the development of the ICT applied program.

Development of Bond Strength Model for FRP Plates Using Back-Propagation Algorithm (역전파 학습 알고리즘을 이용한 콘크리트와 부착된 FRP 판의 부착강도 모델 개발)

  • Park, Do-Kyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.133-144
    • /
    • 2006
  • In order to catch out such Bond Strength, the preceding researchers had ever examined the Bond Strength of FRP Plate through their experimentations by setting up of various fluent. However, since the experiment for research on such Bond Strength takes much of expenditure for equipment structure and time-consuming, also difficult to carry out, it is conducting limitedly. This Study purposes to develop the most suitable Artificial Neural Network Model by application of various Neural Network Model and Algorithm to the adhering experiment data of the preceding researchers. Output Layer of Artificial Neural Network Model, and Input Layer of Bond Strength were performed the learning by selection as the variable of the thickness, width, adhered length, the modulus of elasticity, tensile strength, and the compressive strength of concrete, tensile strength, width, respectively. The developed Artificial Neural Network Model has applied Back-Propagation, and its error was learnt to be converged within the range of 0.001. Besides, the process for generalization has dissolved the problem of Over-Fitting in the way of more generalized method by introduction of Bayesian Technique. The verification on the developed Model was executed by comparison with the resulted value of Bond Strength made by the other preceding researchers which was never been utilized to the learning as yet.

A study to improve the existing rumble-strip (기존 노면요철 포장 개선 연구)

  • Ryu, Sung-Woo;Lim, Kwan;Park, Kwon-Je;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.177-186
    • /
    • 2009
  • Rumble strip was introduced in highway pavement for driver's safety in Korea on 2000. With proving its effectiveness, total length of highway with rumble strip has increased. This research team suggested a modified form of the existing rumble strip, which was placed on new concrete pavement during construction. The modified construction equipment was applied on test section at PyungTeak-Eumsung highway with some performance experiments. Through the equation of stopping sight distance proposed AASHTO, the modified form is safer than the existing one due to 0.65m of extra width. The indoor noise test showed that the modified form $3.5{\sim}9dB(A)$ noisier than the main pavement, which wasn't applied by rumble method. Therefore, it was one of alternatives to prevent sleeping. The modified form made the frequency effected on man's eye. There were no differences of the noise and vibration between modified form and existing one. However, that driver who participated on operating test on that section felt that the former was safer than the latter. It can be concluded that modified form can be applied to the new concrete pavement, that will decrease traffic accident.

  • PDF

Theoretical Seismic Analysis of Butterfly Valve for Nuclear Power Plant (원자력 발전소용 버터플라이밸브의 내진해석)

  • Han, Sang-Uk;Ahn, Jun-Tae;Lee, Kyung-Chul;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1009-1015
    • /
    • 2012
  • Valves are one of the most important components of a pipeline system in a nuclear power plant, and it is important to ensure their structural safety under seismic loads. A crucial aspect of structural safety verification is the seismic qualification, and therefore, an optimal shape design and experimental seismic qualification is necessary in case the configuration of the valve parts needs to be modified and their performance needs to be improved. Recently, intensive numerical analyses have been performed before the experimental verification in order to determine the appropriate design variables that satisfy the performance requirements under seismic loads. In this study, static and dynamic numerical structural analyses of a 200A butterfly valve for a nuclear power plant were performed according to the KEPIC MFA. The result of static analysis considering an equivalent static load under SSE condition gave an applied stress of 135 MPa. In addition, the result of dynamic analysis gave an applied stress of 183 MPa, where the CQC method using response spectrums was taken into account. These values are under the allowable strength of the materials used for manufacturing the butterfly valve, and therefore, its structural safety satisfies the requirements of KEPIC MFA.

Survey of asbestos containing material in laboratory equipment at a university (대학 실험실 장비 중 석면 함유 조사)

  • Ham, Seung hon;Kim, Sung ho;Yeom, Jong soo;Chung, Jin ho;Lee, Ik mo;Yoon, Chung sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.2
    • /
    • pp.110-115
    • /
    • 2011
  • Objectives: The aim of this study is to survey for finding asbestos containing equipment at the laboratories using picture based questionnaire and polarized light microscopic analysis. Methods: This study was conducted from 2009 to 2010 at a university in Seoul. In 2009, picture based questionnaire was distributed to 100 laboratories during the regular laboratory air quality monitoring. In 2010, we emailed all professors of the same university who have laboratories to participate voluntarily this survey. For the laboratories consented to participate survey, picture based questionnaire was distributed and collected. Suspected asbestos containing material and apparatus were collected at the laboratories which replied they have suspected material and equipment. Collected samples were analyzed with polarized light microscope at the laboratory accredited by ministry of employment and labor in Korea. Results: Total of 18 out of 100 laboratories reported that they had suspected asbestos containing equipment in 2009. Twenty-three samples were collected and three samples (13%), one heating mantle and two pairs of insulation gloves, contained asbestos. Thirty four laboratories reported they had suspected asbestos containing material or equipment in 2010. Sixty samples were collected and four of them (6%), two pairs of insulation gloves, one packing rope in dry oven and, one pair of tongs, contained asbestos. All founded asbestos was chrysotile and the content of chrysotile was more than 90% for all equipment except heating mantle which has less than 1%. Conclusions: We confirmed that asbestos was still used at the laboratories though strict regulations on asbestos use in Korea. The method of picture based questionnaire invented in this study could be applied for asbestos survey to other research institute or university where there are many laboratories because of its simplicity and accessibility without huge man power, cost and time.

Enhancement of SNUF Active Trailing-edge Flap Blade Mechanism Design (SNUF뒷전 플랩 블레이드 메커니즘의 설계 개선)

  • Natarajan, Balakumaran;Eun, WonJong;Shin, SangJoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.645-653
    • /
    • 2013
  • Seoul National University flap(SNUF) blade is a small-scale rotor blade incorporating a small trailing-edge flap control surface driven by piezoelectric actuators at higher harmonics for vibration attenuation. Initially, the blade was designed using two-dimensional cross-section analysis and geometrically exact one-dimensional beam analysis, and its material configuration was finalized. A flap-deflection angle of ${\pm}4^{\circ}$ was established as the criterion for enhanced vibration reduction based on an earlier simulation. The flap-linkage mechanism was designed and static bench tests were conducted for verifying the performance of the flap-actuation mechanism. Different versions of test beds were developed and tested with the designed flap and the selected APA 200M piezoelectric actuators. Through significant improvements, a maximum deflection of ${\pm}3.7^{\circ}$ was achieved. High-frequency experiments were conducted for evaluating the performance, and the transfer function of the test bed was determined experimentally. With the static tests almost complete, the rotor power required for testing the blade in a whirl tower (centrifugal environment) was calculated, and further preparations are underway.

Optimization of Initial Blank Shape of Multi-stage Deep Drawing for Improvement of Formability (타원형 다단 딥 드로잉 제품의 성형성 향상을 위한 초기 소재 형상 최적 설계)

  • Lee, Sa-Rang;Park, Sang-Min;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.696-701
    • /
    • 2016
  • Multi-stage deep drawing is a widely used industrial manufacturing process, and its applications are gradually expanding to both small products and large metallic products. The USB C-type socket used in smart phones, for example, is manufactured using oval multi-stage deep drawing. The socket is very small and slender and it requires precise manufacturing. The thickness distribution of the final product is guaranteed only if it is uniform throughout the overall process. Therefore, minimizing the height difference between long and short sidewalls after the first operation is important for this goal. An initial blank optimization was performed for an oval-type drawing process based on finite element simulations. The goal was to determine an initial blank geometry that can maintain uniform height and thickness after the first draw operation. The initial blank shape of the sheet metal was optimized, and the results show that it satisfied the conditions of minimal thickness reduction and even thickness distribution. The geometry from the optimized simulation was compared with experimental results, which showed good agreement.

Springback Minimization using Bottoming in Al Can Deep Drawing Process (알루미늄 캔 딥드로잉에서 Bottoming을 이용한 스프링백 최소화)

  • Park, Sang-Min;Lee, Sa-Rang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.302-307
    • /
    • 2016
  • The technology of multistage deep drawing has been widely applied in the metal forming industry, in order to reduce both the manufacturing cost and time. A battery can used for mobile phone production is a well-known example of multistage deep drawing. It is very difficult to manufacture a battery can, however, because of its large thickness to height aspect ratio. Furthermore, the production of the final parts may result in assembly failure due to springback after multistage deep drawing. In industry, empirical methods such as over bending, corner setting and ironing have been used to reduce springback. In this study, a bottoming approach using the finite element method is proposed as a practical and scientific method of reducing springback. Bottoming induces compression stress in the deformed blank at the final stroke of the punch and, thus, has the effect of reducing springback. Different cases of the bottoming process are studied using the finite element program, DYNAFORM, to determine the optimal die design. The results of the springback simulation after bottoming were found to be in good agreement with the experimental results. In conclusion, the proposed bottoming method is expected to be widely used as a practical method of reducing springback in industry.

The Construction Work Method of Mixed Coal Ash in Ash Pond to Recycle as a Horizontal Drain Material (수평배수재로 재활용하는 회사장 혼합석탄재의 시공 방안)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • The design for horizontal drain layer on soft ground starts from the decision that the material could be used or not, by verifying material condition in permeability of horizontal drain material according to the weight percent of the dry soil retained on #200 sieve. In the next step of the design, we estimate the thickness of horizontal drain layer to confirm trafficability of heavy machinery in construction work. Successively, the long-term functionality for good drainage of horizontal drain layer is checked and if needed, some means are considered. In this study, the system to recycle mixed coal ash in ash pond successfully as a horizontal drain material on soft ground is presented through the process and the result of its practical construction work. Namely, the pact is confirmed that mixed coal ash in ash pond should be sorted out by sieve screen to a certain extent and the remainders of this mixed coal ash on sieve openings be recycled, because the amount of finer particles than $75{\mu}m$ contained in mixed coal ash in ash pond is quite massive and irregular depending on the coal power plant or the location in same ash pond. In order to sort at large scale in situ, the dimension of a sieve squre hole and the sort-out method, etc. should be decided before the sort-out process. And, it is described that we need to manufacture classifier to sort out mixed coal ash in ash pond, too.

A Study on Effectiveness Analysis and Development of an Accident Prediction Model of Point-to-Point Speed Enforcement System (구간단속장비 설치 효과 분석 및 사고예측모형 개발)

  • Kim, Da Ye;Lee, Ho Won;Hong, Kyung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.144-152
    • /
    • 2019
  • According to the National Police Agency, point-to-point speed enforcement system is being installed and operated in 97 sections across the country. It is more effective than other enforcement systems in terms of stabilizing the traffic flow and inhibiting the kangaroo effect. But it is only 5.1% of the total enforcement systems. The National Police Agency is also aware that its operation ratio is very low and it is necessary to expand point-to-point speed enforcement system. Hence, this study aims to provide the expansion basis of the point-to-point speed enforcement operation through analysis of the quantitative effects and development the accident prediction model. Firstly, this study analyzed the effectiveness of point-to-point speed enforcement system. Naive before-after study and comparison group method(C-G Method) were used as methodologies of analyzing the effectiveness. The result of using the naive before-after study was significant. Total accidents, EPDOs and casualty crashes decreased by 42.15%, 70.64% and 45.30% respectively. And average speed and the ratio of exceeding speed limit decreased by 6.92% and 20.50%p respectively. Moreover, using the C-G method total accidents, EPDOs and casualty crashes decreased by 31.35%, 66.62% and 10.04% respectively. And average speed and the ratio of exceeding speed limit decreased by 3.49% and 56.65%p respectively. Secondly, this study developed a prediction model for the probability of casualty crash. It was dependant on factors of traffic volume, ratio of exceeding speed limit, ratio of heavy vehicle, ratio of curve section, and presence of point-to-point speed enforcement. Finally, this study selected the most danger sections to the major highway and evaluated proper installation sections to the recent installation section by applying the accident prediction model. The results of this study are expected to be useful in establishing the installation standards for the point-to-point speed enforcement system.