• Title/Summary/Keyword: ITS: Intelligent Transport System

Search Result 914, Processing Time 0.028 seconds

Operational Design Domain for Testing of Autonomous Shuttle on Arterial Road (도시부 자율주행셔틀 실증을 위한 운행설계영역 분석: 안양시를 중심으로)

  • Kim, Hyungjoo;Lim, Kyungil;Kim, Jaehwan;Son, Woongbee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.135-148
    • /
    • 2020
  • The ongoing development of autonomous driving-related technology may cause different kinds of accidents while testing new changes. As a result, more information on ODD suitable for the domestic road environment will be necessary to prevent safety accidents. Besides, implementation of the Autonomous Vehicle Act will increase autonomous driving demonstrations on roads currently in use. This study describes an ODD for demonstrating an autonomous driving shuttle in downtown areas. It addresses a possible scenario of autonomous driving around a downtown road in Anyang. Geometric, operational, and environmental factors are considered while maintaining a domestic road environment and safety. Autonomous driving shuttles are demonstrated in 30 nodes, each identified by node type and signal-communication. Link criteria are an autonomous driving restriction in 42 morning peak (8-9am) hours, 39 non-peak (12-13pm) hours, and 40 afternoon peak (18-19pm) hours. In the future, conclusions may be considered for preliminary safety assessments of roads where autonomous driving tests are performed.

Effects of Road Networks on Vehicle-Pedestrian Crashes in Seoul (도로네트워크 특성과 차대사람 사고발생 빈도간의 관련성 분석 : 서울시를 사례로)

  • Park, Sehyun;Kho, Seoung-Young;Kim, Dong-Kyu;Park, Ho-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.18-35
    • /
    • 2020
  • Many human, roadway, and vehicle factors affect vehicle-pedestrian crashes. Especially, the roadway factors are easily defined and suitable for suggesting countermeasures. The characteristics of the road network are one of the roadway factors. The road network significantly influences behaviors and conflicts of drivers and pedestrians. A metropolitan city such as Seoul contains various types of road networks, and crash prevention strategy considering characteristics of the road network is required. In this study, we analyze the effects of road networks on vehicle-pedestrian crashes. In the study, high order road ratio, intersection ratio, high-low intersection ratio are considered as road network variables. Using Geographically Weighted Poisson Regression, crash frequencies in Dongs of Seoul are analyzed based on the road network variable as well as socioeconomic variables. As a result, Dongs are grouped by coefficient signs, and each group is suggested about improvement directions considering conflict situations.

An Effectiveness Analysis of Pilot Enforcement for Overweight Vehicles(Trucks) using High-Speed Weigh-In-Motion System (고속 축중기를 이용한 고속도로 과적 시범단속 시행효과 분석)

  • Choi, Yoon-Hyuk;Kwon, Soon-Min;Park, Min-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.63-73
    • /
    • 2016
  • On January 16 to May 31, 2012, Korea Expressway Corporation was carried out an pilot overweight enforcement using high-speed weigh-in-motion at Gyeongbu expressway 195.0k (Gimcheon) and Jungbunaeryuk expressway 119.5k (Seonsan). In this study, it is attempted to analyze the practical effect of high-speed weigh-in-motion by comparing the average total weight and traffic volume of eight weeks before and after the these overweight enforcement, respectively. The main results are as follows: First, the result of analysis of the change in average total weight and traffic volume, it was found that it did not differ after as in previous traffic volume, and the total weight is reduced. This means that the total weight is not reduced by decreasing freight traffic, but by decreasing the total weight. Therefore, it can be seen that there is an effect of pilot overweight enforcement using high-speed weigh-in-motion. Second, the average total weight and total weekly traffic volume decreased rapidly starting from the start of the overweight enforcement, but there was showing a tendency to increase gradually again.

An Analysis on Evacuation Scenario at Metro-stations using Pedestrian Movement-based Simulation Model (보행류 기반 도시철도역사 평가 시뮬레이터를 활용한 대피 시나리오 분석)

  • You, So-young;Jung, Rea-hyuck;Chung, Jin-hyuck
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.36-49
    • /
    • 2016
  • A subway system is one of the major transportation modes at a metropolitan area. When it meets the other lines, the metro station, so-called transferring station, is usually threatened by severe pedestrian congestion and safety issue of transit users including the transportation vulnerable. Although transportation planners forecast travel demand at the beginning, it is not easy to predict pedestrian flows precisely for a long term if land use plans have dramatically changed. Due to expensive costs, structural extension of metro stations is limited. Therefore, it requires efficient and technical improvements as meeting the demand of pedestrian and physical characteristics. In this study, the core mechanism of pedestrian movement-based simulation model was introduced and evacuation scenarios were analyzed with the developed model. As a result, the multiple optimal routes for unexpected events at the solid space of the multiple stories are easily searched through the simulator and in the case of Sadang Station, travel time can be reduced by 60% when the evacuation information and intuitive design are provided.

Design of 5.8 GHz Patch Array Antenna for FTMS Roadside Equipment (FTMS 기지국용 5.8 GHz 대역 배열 패치 안테나 설계)

  • Kwon, Han-Joon;Lee, Jae-Jun;Lee, Seung-Hwan;Kim, Yong-Deak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.61-70
    • /
    • 2008
  • This paper designed the antenna for collecting and servicing the traffic information that apply to freeway Traffic Management System, as using DSRC (Dedicated Short Range Communication). Active DSRC is the technology that is using 5.8GHz Radio Frequency to a mean Sequency and there are a lot of the case occurring a physical electric wave shadowing because of the traveling straight of a electric wave. In such inferior communication environment, it constructed the stabilized communication link that can do collecting and servicing the correct traffic information and designed the beam pattern considering the establishment position of the antenna that can apply to various road environments and a communication area. By considering the communication link environment, this paper designed and manufacture the mean frequency of 5.8GHz, the input loss of -17dB in 75MHz bandwidth, the Axial ratio of 1.5:1, and $2{\times}4$ array microstrip antenna which beam pattern have the characteristic of $55^{\circ}$ horizontal half power beam width and $26^{\circ}$elevation half power beam width and the minimum establishment height of the antenna was designed as 14m for avoiding electric wave shadowing on a physical condition between vehicles

  • PDF

Incident Detection for Urban Arterial Road by Adopting Car Navigation Data (차량 궤적 데이터를 활용한 도심부 간선도로의 돌발상황 검지)

  • Kim, Tae-Uk;Bae, Sang-Hoon;Jung, Heejin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • Traffic congestion cost is more likely to occur in the inner city than interregional road, and it accounts for about 63.39% of the whole. Therefore, it is important to mitigate traffic congestion of the inner city. Traffic congestion in the urban could be divided into Recurrent congestion and Non-recurrent congestion. Quick and accurate detection of Non-recurrent congestion is also important in order to relieve traffic congestion. The existing studies about incident detection have been variously conducted, however it was limited to Uninterrupted Traffic Flow Facilities such as freeway. Moreover study of incident detection on the interrupted Traffic Flow Facilities is still inadequate due to complex geometric structure such as traffic signals and intersections. Therefore, in this study, incident detection model was constructed using by Artificial Neural Network to aim at urban arterial road that is interrupted traffic flow facility. In the result of the reliability assessment, the detection rate were 46.15% and false alarm rate were 25.00%. These results have a meaning as a result of the initial study aimed at interrupted traffic flow. Furthermore, it demonstrates the possibility that Non-recurrent congestion can be detected by using car navigation data such as car navigator system device.

Vehicle Localization Method for Lateral Position within Lane Based on Vision and HD Map (비전 및 HD Map 기반 차로 내 차량 정밀측위 기법)

  • Woo, Rinara;Seo, Dae-Wha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.186-201
    • /
    • 2021
  • As autonomous driving technology advances, the accuracy of the vehicle position is important for recognizing the environments around driving. Map-matching localization techniques based on high definition (HD) maps have been studied to improve localization accuracy. Because conventional map-matching techniques estimate the vehicle position based on an HD map reference dataset representing the center of the lane, the estimated position does not reflect the deviation of the lateral distance within the lane. Therefore, this paper proposes a localization system based on the reference lateral position dataset extracted using image processing and HD maps. Image processing extracts the driving lane number using inverse perspective mapping, multi-lane detection, and yellow central lane detection. The lane departure method estimates the lateral distance within the lane. To collect the lateral position reference dataset, this approach involves two processes: (i) the link and lane node is extracted based on the lane number obtained from image processing and position from GNSS/INS, and (ii) the lateral position is matched with the extracted link and lane node. Finally, the vehicle position is estimated by matching the GNSS/INS local trajectory and the reference lateral position dataset. The performance of the proposed method was evaluated by experiments carried out on a highway environment. It was confirmed that the proposed method improves accuracy by about 1.0m compared to GNSS / INS, and improves accuracy by about 0.04m~0.21m (7~30%) for each section when compared with the existing lane-level map matching method.

Estimation of Traffic Safety Improvement Effect of Forward Collision Warning (FCW) (전방충돌경보(FCW)의 교통안전 증진효과 추정)

  • Kim, Hyung-kyu;Lee, Soo-beom;Lee, Hye-rin;Hong, Su-jeong;Min, hye-Ryung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.43-57
    • /
    • 2021
  • The Forward Collision Warning, a representative technology of the Advanced Driver Assistance Systems, was selected as the target technology. The cognitive response time, deceleration, and impact were selected as the measures of effectiveness. And the amount of change with and without the Forward Collision Warning was measured. The experimental scenarios included a sudden stop event (1) of the vehicle in front of the driver and an event (2) in which the vehicle intervened in the next lane. All experiments were divided into day and night. As a result of the analysis, response time and the deceleration rate decreased when the forward collision warning system was installed. It was analyzed that the driver's risk situation could be detected quickly and the number of front-end collisions could be reduced as a result. Reflecting the driver's operating habits and diversifying the experimental scenarios will increase the installation effectiveness of ADAS and be used to estimate the effectiveness of other technologies.

Analysis of Spatial Trip Regularity using Trajectory Data in Urban Areas (도시부 경로자료를 이용한 통행의 공간적 규칙성 분석)

  • Lee, Su jin;Jang, Ki tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.96-110
    • /
    • 2018
  • As the development of ICT has made it easier to collect various traffic information, research on creating new traffic attributes is drawing attention. Estimation and forecasts of demand and traffic volume are one of the main indicators that are essential to traffic operation, assuming that the traffic pattern at a particular node or link is repeated. Traditionally, a survey method was used to demonstrate this similarity on trip behavior. However, the method was limited to achieving high accuracy with high costs and responses that relied on the respondents' memory. Recently, as traffic data has become easier to gather through ETC system, smart card, studies are performed to identify the regularity of trip in various ways. In, this study, route-level trip data collected in Daegu metropolitan city were analyzed to confirm that individual traveler forms a spatially similar trip chain over several days. For this purpose, we newly define the concept of spatial trip regularity and assess the spatial difference between daily trip chains using the sequence alignment algorithm, Dynamic Time Warping. In addition, we will discuss the applications as the indicators of fixed traffic demand and transportation services.

Analysis of PM (Personal Mobility) Traffic Accident Caracteristics and Cause of Death (PM (Personal Mobility) 교통사고 특성 및 사망사고 발생 요인 분석)

  • Han, Sangyeou;Lee, Chulgi;Yun, Ilsoo;Yoon, Yeoil;Na, Jaepil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.100-118
    • /
    • 2021
  • In this study, PM accidents (1,603case) and bicycle accidents (14,672case) that occurred in the last three years were analyzed to determine the characteristics of PM traffic accidents. In particular, PM traffic accidents were divided into perpetrators and victims to determine the characteristics in detail. For PM accidents, the analysis was conducted on the status of each road grade, road type, weather condition, accident type, day and night occurrence, and vehicle type. The number of PM accidents that occurred in 2019 increased by 129%, and deaths increased by more than 200% compared to the previous year. The proportion of pedestrian accidents among PM traffic accidents was higher than that of bicycle accidents. Therefore, regulations on PM traffic are necessary. For the 20 deaths of PM, a detailed analysis was conducted to analyze the factors of traffic accidents. PM fatalities occurred in 50% of vehicle accidents, and 7 out of 10 vehicle accidents occurred at night. This is believed to have been caused by falling or overturning due to an obstacle, such as a depression in the road pavement or a speed bump.