• Title/Summary/Keyword: ITS(Intelligent Transportation Systems)

Search Result 660, Processing Time 0.022 seconds

A Study on the Verification of Traffic Flow and Traffic Accident Cognitive Function for Road Traffic Situation Cognitive System

  • Am-suk, Oh
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.273-279
    • /
    • 2022
  • Owing to the need to establish a cooperative-intelligent transport system (C-ITS) environment in the transportation sector locally and abroad, various research and development efforts such as high-tech road infrastructure, connection technology between road components, and traffic information systems are currently underway. However, the current central control center-oriented information collection and provision service structure and the insufficient road infrastructure limit the realization of the C-ITS, which requires a diversity of traffic information, real-time data, advanced traffic safety management, and transportation convenience services. In this study, a network construction method based on the existing received signal strength indicator (RSSI) selected as a comparison target, and the experimental target and the proposed intelligent edge network compared and analyzed. The result of the analysis showed that the data transmission rate in the intelligent edge network was 97.48%, the data transmission time was 215 ms, and the recovery time of network failure was 49,983 ms.

Study on the Conformance Testing of Data Exchange between Transport Information Center and Terminal Equipment (교통정보센터와 단말기간 데이터교환 기술기준 적합성 시험에 관한 연구)

  • Lee, Sang-Hyun;Kim, Gyeong-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.147-158
    • /
    • 2008
  • Recently, Intelligent Transportation System (ITS) has been actively developed and built since the Transportation System Efficiency Promotion Act was enacted. However, since mutual connection among transportation information systems was not considered, the integration of transportation information services did not occur. Accordingly, the Ministry of Land Transport and Maritime Affairs established and announced the technical standard on ITS. In this study, the conformance testing of the transportation information and communication system interface standard on data exchange between the Transportation Information Center and terminals was researched The test items were categorized as data request tests and data providing tests by analyzing the communication procedures specified in the standard. A detail testing scenario was created for each item. The test assessment was established based on the conformance of data exchange procedures and the accuracy of data packet messages. Under the established technical standard, the number of times that tests should be performed was thought set to 30 and the success rate was set to 95%. The purpose of this study is to help the ITS of Korea perform the integrated management of transportation information by researching methods for conformance testing on the technical standard on ITS.

  • PDF

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings

  • Kosasih, David Ishak;Lee, Byung-Gook;Lim, Hyotaek
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

The study on IPv6 technology for real-time information services of intelligent transportation system (지능형 교통시스템의 실시간 정보 서비스를 위한 IPv6 기술 연구)

  • Lim, Il-Kwon;Kim, Young-Hyuk;Li, Qi Gui;Park, So-Ah;Lee, Jae-Kwang;Park, Woo-Jun;Cheon, Byeong-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.417-420
    • /
    • 2010
  • The best alternative to increasing traffic problems, the Intelligent Transportation Systems (ITS: Intelligent Transportation System) has been studied. And the 2001 "National ITS Master Plan 21" is established, The project is promoting in Korea. In this paper, real-time road and traffic information services is implemented using intelligent transportation system of the domestic real-time road and traffic information services. So compatible technology with both IPv4 and IPv6 was applied to the system for using IPv6.

  • PDF

Development of Highway Traffic Information Prediction Models Using the Stacking Ensemble Technique Based on Cross-validation (스태킹 앙상블 기법을 활용한 고속도로 교통정보 예측모델 개발 및 교차검증에 따른 성능 비교)

  • Yoseph Lee;Seok Jin Oh;Yejin Kim;Sung-ho Park;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.1-16
    • /
    • 2023
  • Accurate traffic information prediction is considered to be one of the most important aspects of intelligent transport systems(ITS), as it can be used to guide users of transportation facilities to avoid congested routes. Various deep learning models have been developed for accurate traffic prediction. Recently, ensemble techniques have been utilized to combine the strengths and weaknesses of various models in various ways to improve prediction accuracy and stability. Therefore, in this study, we developed and evaluated a traffic information prediction model using various deep learning models, and evaluated the performance of the developed deep learning models as a stacking ensemble. The individual models showed error rates within 10% for traffic volume prediction and 3% for speed prediction. The ensemble model showed higher accuracy compared to other models when no cross-validation was performed, and when cross-validation was performed, it showed a uniform error rate in long-term forecasting.

An Edge AI Device based Intelligent Transportation System

  • Jeong, Youngwoo;Oh, Hyun Woo;Kim, Soohee;Lee, Seung Eun
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.166-173
    • /
    • 2022
  • Recently, studies have been conducted on intelligent transportation systems (ITS) that provide safety and convenience to humans. Systems that compose the ITS adopt architectures that applied the cloud computing which consists of a high-performance general-purpose processor or graphics processing unit. However, an architecture that only used the cloud computing requires a high network bandwidth and consumes much power. Therefore, applying edge computing to ITS is essential for solving these problems. In this paper, we propose an edge artificial intelligence (AI) device based ITS. Edge AI which is applicable to various systems in ITS has been applied to license plate recognition. We implemented edge AI on a field-programmable gate array (FPGA). The accuracy of the edge AI for license plate recognition was 0.94. Finally, we synthesized the edge AI logic with Magnachip/Hynix 180nm CMOS technology and the power consumption measured using the Synopsys's design compiler tool was 482.583mW.

Study on Applicability of the Vehicle Detection Using a Coil Sensor (코일센서를 이용한 차량검지기 적용성에 대한 연구)

  • Lee, Sang-O;Lee, Choul-Ki;Yun, Ilsoo;Kim, Nam-Sun;Lee, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.14-23
    • /
    • 2015
  • This study was intended to evaluate the feasibility of the vehicle detector using a coil sensor. For the evaluation, the research team built a test environment for the detector consisting of a oscillation circuit, data collecting circuit, data monitoring and saving circuit, etc. As the result of the frequency analysis of the detector from the test environment, it was verified for the detector using a coil sensor to generate stable frequencies. In addition, the ease of construction and management was tested by comparing the size of cutting areas, consumption of installation materials, and installation time for a traditional loop detector and the detector using a coil sensor. As a result, the installation of the detector using a coil sensor requires less size of cutting areas, consumption of installation materials, and installation time.