• Title/Summary/Keyword: ITO surface treatment

Search Result 98, Processing Time 0.026 seconds

Optically Transparent ITO Film and the Fabrication of Plasma Signboard (투명 전극 ITO 박막의 열처리 영향과 플라즈마 응용 표시소자 제작에 관한 연구)

  • Jo, Young Je;Kim, Jae-Kwan;Han, Seung-Cheol;Kwak, Joon-Seop;Lee, Ji-Myon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Indium tin oxide(ITO) thin films were deposited on the glass substrates by radio-frequency (RF) magnetron sputtering method. The influence of rapid thermal annealing (RTA) treatment on the optical and electrical properties of the films were investigated for the purpose of fabricating plasma display signboard. Structural properties, surface roughness, sheet resistance and transmittance of the ITO film were analysed by using x-ray diffraction method, atomic force microscopy (AFM), four point prove, and ultraviolet-visible spectrometer, respectively. It was found that the RTA treatment increased the transmittance and decreased the resistivity of the ITO film, respectively. Furthermore, we successfully demonstrated the direct-current plasma signboard by using ITO electrode and phosphors.

Electrical Properties of Green Emitting OLED (녹색 발광 OLED의 전기적 특성)

  • Hong, Kyung-Jin;Ki, Hyun-Chol;Kim, Sang-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.301-302
    • /
    • 2009
  • The Green emitting OLED was fabricated with the structure of ITO(plasm treatment)/TPD($400\;{\AA}$)/$Alq_3(600\;{\AA})$/LiF($5\;{\AA}$)/Al($1200\;{\AA}$). Turn-on voltage of PMOLED was 7 V and luminance was 7,371 cd/$m^2$ at the RF power of 25W. O2 plasma treatment of ITO surface was result in lowering the operating voltage and improving luminance of green OLED.

  • PDF

Influence of Heat-treatment on Physical Properties of Nanocrystalline Indium Tin Oxide (ITO) Particle (나노급 인듐 주석 산화물 입자의 물성에 미치는 열처리의 영향)

  • 홍성제;한정인;정상권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.747-753
    • /
    • 2004
  • In this paper, nanocrystalline indium tin oxide (ITO) particles were fabricated by using synthesis without harmful elements. The synthetic method is to eliminate the chloridic and nitridic elements which are included in the current wet type synthetic method. Therefore, it is possible to lower synthetic temperature below 600 $^{\circ}C$ to eliminate the harmful elements. Accordingly, fine particle can be achieved by applying the process. Particle size, surface area, crystal structure, and composition ratio of the synthesized nanocrystalline ITO particle by using the method were analyzed with high resolution transmission electron microscopy (HRTEM), BET surface area analyzer, X-ray diffraction (XRD), and energy dispersion spectroscopy (EDS). As a result, its particle size is less than 10 nm, and the surface area exceeds 100 m$^2$/g. The XRD analysis indicates that the cystal structure of the powder is cubic one with orientation of <222>, <400>, <440>. Also, the analysis of the composition demonstrates that the around 8 wt% tin is uniformly included in In$_2$O$_3$ lattice of the nanoparticle.

Surface Mdification of ITO Film by an Atmospheric Pressure Plasma Treatment (대기압 플라즈마 처리에 의한 ITO 필름의 표면 개질)

  • Lee, Chang-Ho;Choi, Young-Kil;Kim, Jong-Hyun;Song, Hyun-Jig;Park, Won-Joo;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.323-326
    • /
    • 2009
  • 본 연구에서는 대기압 플라즈마의 처리 조건에 따른 ITO 필름의 접착력 향상을 위한 접촉각 및 표면에너지의 변화를 관찰하였다. 대기압 플라즈마의 처리 변수로는 반응 가스, 처리 속도 방전 전압 및 시료와 플라즈마 헤드 사이의 방전 캡이며, 측정된 접촉각을 이용하여 ITO 필름의 표면을 분석하였다. 그 결과는 방전 전압이 증가할수록 접촉각은 낮아졌으며, 시료와 플라즈마 헤드 사이의 방전 간격은 2.5[mm]에서 접촉각이 낮게 나타나 ITO 필름의 접착력 향상을 위한 친수성 물질로 표면 개질됨을 확인할 수 있었다.

  • PDF

The Effects of Oxygen Plasma and Cross-link Process on Quantum-dot Light Emitting Diodes

  • Cho, Nam-Kwang;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.215-215
    • /
    • 2014
  • Red color light emitting diodes (LEDs) were fabricated using CdSe/CdZnS quantum dots (QDs). During the device fabrication process, oxygen plasma treatment on the ITO surface was performed to improve the interfacial contact between ITO anode and the hole injection layer. CdSe/CdZnS quantum dots were cross-linked to remove their surrounded organic surfactants. The device shows red emission at 622 nm, which is consistent with the dimension of the QDs (band gap=1.99 eV). The luminance shows 6026% improvement compared with that of LEDs fabricated without oxygen plasma treatment and quantum dots cross-linking process. This approach would be useful for the fabrication of high-performance QLEDs with ITO electrode and PEDOT:PSS hole injection layers.

  • PDF

Effect of Different Pretreatments on Indium-Tin Oxide Electrodes

  • Choi, Moonjeong;Jo, Kyungmin;Yang, Haesik
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.421-425
    • /
    • 2013
  • The effect of pretreatment on indium-tin oxide (ITO) electrodes has been rarely studied, although that on metal and carbon electrodes has been enormously done. The electrochemical and surface properties of ITO electrodes are investigated after 6 different pretreatments. The electrochemical behaviors for oxygen reduction, $Ru(NH_3){_6}^{3+}$ reduction, $Fe(CN){_6}^{3-}$ reduction, and p-hydroquinone oxidation are compared, and the surface roughness, hydrophilicity, and surface chemical composition are also compared. Oxygen reduction, $Fe(CN){_6}^{3-}$ reduction, and p-hydroquinone oxidation are highly affected by the type of the pretreatment, whereas $Ru(NH_3){_6}^{3+}$ reduction is almost independent of it. Interestingly, oxygen reduction is significantly suppressed by the treatment in an HCl solution. The changes in surface roughness and composition are not high after each pretreatment, but the change in contact angle is substantial in some pretreatments.

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF

Characteristics and fabrications of high brightness organic light emitting diode(OLED) (고휘도 유기발광소자 제작 및 특성)

  • Jang, Yoon-Kee;Lee, Jun-Ho;Nam, Hyo-Duk;Park, Chin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.316-319
    • /
    • 2001
  • Organic light emitting diodes(OLEDs) with a hole injection layer inserted between Indium-Tin-Oxide(ITO) anode and hole transport layer were fabricated. The effect of plasma treatment on the surface properties of Indium-Tin-Oxide(ITO) anode were studied. The electrical and optical characteristics of the fabricated organic light emitting diodes(OLEDs) were also studied. The diode including of plasma treated ITO substrate and the hole injection layer, which showed the luminance of 5280 $cd/m^{2}$ at 8 V

  • PDF

Characteristics and fabrications of high brightness organic light emitting diode(OLED) (고휘도 유기발광소자 제작 및 특성)

  • 장윤기;이준호;남효덕;박진호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.316-319
    • /
    • 2001
  • Organic light emitting diodes(OLEDs) with a hole injection layer inserted between Indium-Tin-Oxide(ITO) anode and hole transport layer were fabricated. The effect of plasma treatment on the surface properties of Indium-Tin-Oxide(ITO) anode were studied. The electrical and optical characteristics of the fabricated organic light emitting diodes(OLEDs) were also studied. The diode including of plasma treated ITO substrate and the hole injection layer, which showed the luminance of 5280 cd/㎡ at 8 V

  • PDF

Indium Tin Oxide-Free Large-Area Flexible Organic Light-Emitting Diodes Utilizing Highly Conductive poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) Anode Fabricated by the Knife Coating Method (나이프 코팅 법으로 제작한 ITO-Free 고전도성 PEDOT:PSS 양극 대면적 유연 OLED 소자 제작에 관한 연구)

  • Seok, JaeYoung;Lee, Jaehak;Yang, MinYang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper reports solution-processed, high-efficiency organic light-emitting diodes (OLEDs) fabricated by a knife coating method under ambient air conditions. In addition, indium tin oxide (ITO), traditionally used as the anode, was substituted by optimizing the conductivity enhancement treatment of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films on a polyethylene terephthalate (PET) substrate. The transmittance and sheet resistance of the optimized PEDOT:PSS anode were 83.4% and $27.8{\Omega}/sq$., respectively. The root mean square surface roughness of the PEDOT:PSS anode, measured by atomic force microscopy, was only 2.95 nm. The optimized OLED device showed a maximum current efficiency and maximum luminous density of 5.44 cd/A and $8,356cd/m^2$, respectively. As a result, the OLEDs created using the PEDOT:PSS anode possessed highly comparable characteristics to those created using ITO anodes.