• Title/Summary/Keyword: ITO Thin Film

Search Result 557, Processing Time 0.024 seconds

Nonhomogeneity of the Electrical Properties with Deposition Position in an ITO Thin Film Deposited under a Given R.F. Magnetron Sputtering Condition (동일 증착 조건의 스퍼터링에 의해서 제작된 Indium Tin 산화물 박막의 증착위치에 따른 전기적 특성의 불균질성)

  • 유동주;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.973-979
    • /
    • 2001
  • Tin-doped indium oxide (ITO) thin films were deposited using r.f. magnetron reactive sputtering and the electrical properties, such as the resistivity, carrier concentration and mobility, were investigated as a function of the sample position under a given magnetron sputtering condition. The nonhomogeneity of the electrical properties with the sample position was observed under a given magnetron sputtering condition. The resistivity of ITO thin film on the substrate which corresponded to the center of the target had a minimum value, 2∼4$\times$10$\^$-4/$\Omega$$.$cm, and it increased symmetrically when the substrate deviated from the center. The density measurement result also showed that ITO thin film deposited at the center has a maximum density of 7.0g/cm$^3$, which was a relative density of about 97%, and the density decreased symmetrically as the substrate deviated from the center. The nonhomogeneity of electrical properties with the deposition position could be explained with the incidence angle of the source beam alpha, which is related with an atomic self-shadowing effect. It was confirmed experimentally that the density in film affect both the carrier mobility and the conductivity. In the case where the density of ITO thin film is 7.0g/cm$^3$, the magnitude of the mean free path was identical with that of the grain size(the diameter of column). However, in the other cases, the mean free path was smaller than the grain size. These results showed that the scattering of the free electrons at the grain boundary is the major factor for the electrical conduction in ITO thin films having a high density, and there exists other scattering sources such as vacancies, holes, or pores in ITO thin films having a low density.ing a low density.

  • PDF

The Study on the CMP of Transparent Conductive ITO Thin Films for the Organic Electro-Luminescence Display (유기 전계 발광 디스플레이용 ITO 투명 전도성 박막의 CMP에 관한 연구)

  • Jo, Seong-Hwan;Kim, Hyeong-Jae;Kim, Gyeong-Jun;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.976-985
    • /
    • 2002
  • The purpose of this paper is that the roughness(Rrms = 31$\AA$, Rp-v = 270$\AA$) of ITO thin film deposited by sputtering method for OELD is improved to Rrms $\leq$ 10$\AA$, Rp-v $\leq$ 80$\AA$ by chemical mechanical polishing(CMP). First, ITO thin films are polished with a variety of consumables (Pads, Slurries) to choose proper some for the roughness improvement and the CMP mechanism of ITO thin films is demonstrated on the ground of the experiment results. Henceforth, the CMP characteristics (Removal rate, Non-uniformity) of chosen consumables are evaluated according to processing conditions (Polishing pressures, Table velocities) and suitable conditions for ITO film CMP are selected. Finally, the electrical and optical properties (Sheet resistance, Transmittance) of ITO thin films are investigated to verify whether or not ITO thin film are still suitable for OELD after polished.

Characteristics of ITO thin films prepared on PC substrate (PC 기판상에 제작된 ITO 박막의 특성)

  • Kim, Kyung-Hwan;Cho, Bum-Jin;Keum, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.420-421
    • /
    • 2006
  • The ITO thin films were prepared by FTS (Facing Targets Sputtering) system on polycarbonate(PC) substrate. The ITO thin films were deposited with a film thickness of 100nm at room temperature. As a function of sputtering conditions, electrical and optical properties of prepared ITO thin films were measured. The electrical and optical characteristics of the ITO thin films were evaluated by Hall Effect Measurement(EGK) and UV-VIS spectrometer(HP), respectively. From the results, the ITO thin film was deposited with a resistivity $8{\times}10^{-4}[{\Omega}-cm]$ and transmittance over 80%.

  • PDF

Bending Effects of ITO Thin Film Deposited on the Polymer Substrate (고분자 기판에 증착한 ITO 박막의 Bending 효과)

  • Kim, Sang-Mo;Rim, You-Seung;Choi, Hyung-Wook;Choi, Myung-Gyu;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.669-673
    • /
    • 2008
  • ITO thin film was deposited on PC substrate in Facing Targets Sputtering (FTS) system with various sputtering conditions. After it is applied to external bending force, we investigated how change the surface and electrical property of as-deposited ITO thin film. As the L(face-plate distance) of substrate decreases, it found that the maximum crack density is increasing at the center position and decreasing crack density as goes to the edge. So to apply same curvature (r) and bending force to PC substrate with ITO thin film, we fixed the L that is equal to curvature radius (2r). Before bending test, ITO thin films that deposited in the input current of 0.4 A and thickness of 200 nm already had biaxial tensile failure because of each different CTE (Coefficient of Thermal Expansion) and Others had been shown no bending or crack. After bending test, all samples had been shown cracks at about 200 times and as increasing the crack density, resistivity increased.

Properties of ITO thin films with film thickness at room temperature (막 두께 변화에 따라 실온 제작된 ITO 박막의 특성)

  • Kim, K.H.;Kim, H.W.;Keum, M.J.;Kim, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1856-1858
    • /
    • 2005
  • In this study, Indium Tin Oxide(ITO) thin films were prepared at $O_2$ gas 0.2 sccm, no heating to substrate and working pressure 1mTorr with varying deposition time. We estimated structural, optical, electrical characteristics of ITO thin films as function of ITO thin films thickness. As a result, XRD peaks increased with increasing the thickness. The ITO thin film was fabricated with resistivity $4.23{\times}10^{-4}[{\Omega}{\cdot}cm]$, carrier mobility $52.9[cm^2/V{\cdot}sec]$, carrier concentration $2.79{\times}10^{20}[cm^{-3}]$. And we also observed that the SEM images of ITO thin films surface.

  • PDF

Electrical and Optical Properties of ITO Thin Films with Various Thicknesses of SiO2 Buffer Layer for Capacitive Touch Screen Panel (정전용량식 터치스크린 패널을 위한 SiO2 버퍼층 두께에 따른 ITO 박막의 전기적 및 광학적 특성)

  • Yeun-Gun, Chung;Yang-Hee, Joung;Seong-Jun, Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1069-1074
    • /
    • 2022
  • In this study, we prepared ITO thin films on the Nb2O5/SiO2 double buffer layer and investigated electrical and optical properties according to the change of SiO2 buffer layer thickness (40~50nm). The ITO thin film fabricated on the Nb2O5/SiO2 double buffer layer exhibited a broad surface roughness with a small value ranging of 0.815 to 1.181nm, and the sheet resistance was 99.3 to 134.0Ω/sq. It seems that there is no problem in applying the ITO thin film to a capacitive touch screen panel. In particular, the average transmittance in the short-wavelength (400~500nm) region and the chromaticity (b*) of the ITO thin film deposited on the Nb2O5(10nm)/SiO2(40nm) double buffer layer showed significantly improved results as 83.58% and 0.05, respectively, compared to 74.46% and 4.28 of ITO thin film without double buffer layer. As a result, it was confirmed that optical properties such as transmittance in the short-wavelength region and chromaticity were remarkably improved due to the index matching effect in the ITO thin film with the Nb2O5/SiO2 double buffer layer.

Growth of Electrochemical Nickel Thin Film on ITO(Indium Tin Oxide) Electrode (ITO(Indium Tin Oxide) 전극상의 전기화학적 Nickel 박막형성)

  • Kim, Woo-Seong;Seong, Jeong-Sub
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.155-161
    • /
    • 2002
  • We studied the formation of nickel nano thin film that have various electrochromic properties. Nickel thin film having various thickness will apply photoelectronic devices, specially, electrochromic devices. These devices will apply lens, battery, glass and solar cell that have light, thin, simple and small that applied nanotechnology and quantum dot. Nickel thin film was coated by electrochemical method on ITO electrode. We studied the thin film properties by Cyclic voltammetry, Chronoamperometry. Impedance. X-ray diffraction analysis and Atomic force microscopy.

  • PDF

The investigation of ITO thin film prepared by Facing Targets Sputtering (FTS) by Bending (대향 타겟식 스퍼터링으로 증착한 ITO 박막의 Bending에 의한 특성 분석)

  • Kim, Sang-Mo;Rim, You-Seung;Keum, Min-Jong;Choi, Myung-Gyu;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.438-439
    • /
    • 2007
  • In this study, we prepared ITO thin film on the polycarbonate(PC) substrate by using Facing Targets sputtering (FTS) system. After the external bending force was applied to as-deposited ITO thin films with fixed face-plate distance (L), we investigated how properties of those change. As a result, the crack density of films was increasing as bending frequency increased. In accordance with crack distribution, we observed that the resistivity value of ITO thin film increased.

  • PDF

Dependency of Oxygen Partial Pressure of ITO Films for Electrode of Oxide-based Thin-Film Transistor (산화물기반 박막트랜지스터 전극용 ITO박막의 제작시 투입 산소 분압 의존성)

  • Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.82-86
    • /
    • 2021
  • In this study, we investigated the oxygen partial pressure effect of ITO films for electrodes of oxide-based Thin-Film Transistor (TFT). Firstly, we deposited single ITO films on the glass substrate at room temperature. ITO films were prepared at the various partial pressures of oxygen gas 0-7.4% (O2/(Ar+O2)). As increasing oxygen on the process of film deposition, electrical properties were improved and optical transmittance increased in the visible light range (300-800 nm). For the electrode of TFT, we fabricated a TFT device (W/L=1000/200 ㎛) with ITO films as the source and drain electrode on the silicon wafer. Except for the TFT device combined with ITO film prepared at the oxygen partial pressure ratio of 7.4%, We confirmed that TFT devices with ITO films via FTS system operated as a driving device at threshold voltage (Vth) of 4V.

Preparation of ITO thin films by FTS(Facing Targets Sputtering) method (FTS법을 이용한 ITO박막의 제작)

  • Kim, G.H.;Keum, M.J.;Kim, H.K.;Son, S.H.;Jang, K.W.;Lee, W.J.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.203-206
    • /
    • 2004
  • In this study the ITO thin films were prepared by using FTS(Facing Targets Sputtering) system. The electric characteristics, transmittance, surface roughness of ITO thin films were investigated as a function of varying input current and working gas pressure at room temperature. As a result, the ITO thin film was fabricated with resistivity $6{\times}10^{-4}[\Omega{\cdot}cm]$, carrier mobility $52.11[cm^2/V{\cdot}sec]$, carrier concentration $1.72{\times}10^{20}[cm^{-3}]$ of ITO thin film at working pressure 1mTorr and input current 0.6A.

  • PDF