• Title/Summary/Keyword: ITO (Indium Tin Oxide)

Search Result 835, Processing Time 0.031 seconds

Enhancement of Hole Injection in Organic Light Emitting Device by using Ozone Treated Ag Nanodots Dispersed on ITO Anode (나노 사이즈의 Ag dot을 성막한 ITO 애노드의 오존처리에 의한 유기발광소자의 홀 주입 특성 향상)

  • Moon, Jong-Min;Bae, Jung-Hyeok;Jeong, Soon-Wook;Li, Min-Su;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1037-1043
    • /
    • 2006
  • We report the enhancement of hole injection using ozone-treated Ag nanodots dispersed on indium tin oxide anode in $Ir(ppy)_3-doped$ phosphorescent OLED. Phosphorescent OLED fabricated on Ag nanodots dispersed ITO anode showed a lower turn on voltage and higher luminescence than those of OLEDS prepared commercial ITO anode. Synchrotron x-ray scattering examination results showed that the Ag nanodots dispersed on ITO anode is amorphous structure due to low deposition temperature. It was thought that decrease of the energy barrier height as Ag nanodots changed to $AgO_x$ nanodots by surface treatment using ozone for 10 min led to enhancement of hole injection in phosphorescent OLED. Futhermore, efficient hole injection can be explained by increase of contact region between anode material and organic material through introduction of $Ag_2O$ nanodots.

Enhanced Performance of the OLED with Plasma Treated ITO and Plasma Polymerized Methyl Methacrylate Buffer Layer (ITO 플라즈마 표면처리와 ppMMA 버퍼층으로 제작한 OLED의 발광특성)

  • Lim Jae-Sung;Shin Paik-Kvun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.30-33
    • /
    • 2006
  • Transparent indium tin oxide (ITO) anode surface was modified using $O_3$ Plasma and organic ultrathin buffer layers were deposited on the ITO surface using 13.56 MHz RF plasma polymerization technique. The EL efficiency, operating voltage and lifetime of the organic light-emitting device (OLED) were investigated in order to study the effect of the plasma surface treatment and role of plasma polymerized organic ultrathin buffer layer. Poly methylmethacrylate (PMMA) layers were plasma polymerized on the ITO anode as buffer layer between anode and hole transport layer (HTL). The plasma polymerization of the organic ultrathin layer were carried out at a homemade capacitive-coupled RF plasma equipment. N,N'-diphenyl-N,N'(3- methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as HTL, Tris(8-hydroxyquinolinato) Aluminum $(Alq_3)$ as both emitting layer (EML)/electron transport layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Effects of the plasma surface treatment of ITO and plasma polymerized buffer layers on the OLED performance were discussed.

ITO Thin Film Ablation Using KrF Excimer Laser and its Characteristics

  • Lee, Kyoung-Chel;Lee, Cheon;Le, Yong-Feng
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.20-24
    • /
    • 2000
  • This study aimed to develop ITO(Indium Tim Oxide) tin films ablation with a pulsed type KrF excimer laser required for the electrode patterning application in flat panel display into small geometry on a large substrate are. The threshold fluence for ablating ITO on glass substrate is about 0.1 J/㎠. And its value is much smaller than that using 3 .sup rd/ harmonic Nd:YAG laser. Through the optical microscope measurement the surface color of the ablated ITO is changed into dark brown due to increase of surface roughness and transformation of chemical composition by the laser light. The laser-irradiated regions were all found to be electrically isolating from the original surroundings. The XPS analysis showed that the relative surface concentration of Sn and In was essentially unchanged (In:Sn=5:1)after irradiating the KrF excimer laser. Using Al foil made by 2$\^$nd/ harmonic Na:YAG laser, the various ITO patterning is carried out.

  • PDF

점진적인 굴절률 변화를 갖는 투명전도 산화막이 실리콘 태양전지의 특성에 미치는 영향

  • O, Gyu-Jin;Kim, Eun-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.225.2-225.2
    • /
    • 2013
  • 실리콘기반의 광전변환 소자는 소자공정의 편의성, 소자 신뢰성, 화학적 안정성, 그리고 저가경쟁력 등의 이점 때문에 수 십 년간 널리 연구되어 왔다. 그러나, 실리콘 재료의 경우 높은 굴절률로 인해 표면에서 높은 광 반사도를 가지고 있다. 일반적으로, 태양전지의 광전변환 효율은 빛이 서로 다른 유전율을 가진 계를 통과할 때 발생하는 계면반사로 인한 물리적인 한계를 가진다. Indium Tin Oxide (ITO)는 발광 다이오드, 태양전지, 그리고 광 검출기 등의 광소자에 적용하기 위해 수 년간 투명전도 산화막 재료로서 연구되어 왔다. ITO의 뛰어난 광학적, 전기적 특성은 높은 투과도와 낮은 전기 전도도를 요구하는 소자 응용에 대해 유망한 후보로 거듭나게 했다. 게다가, ITO의 굴절률은 대략 2정도이다. 그 결과, ITO는 반도체 기반 태양전지의 무반사 코팅 소재로서도 장점을 가지고 있다. 본 연구는 전자빔 증착법으로 경사입사 증착을 하여 실리콘 기반 태양전지에 증착될 ITO 박막의 굴절률을 조절한다. 여기서, 실리콘의 굴절률은 대략 3.5정도이다. 그러므로, 더 나은 광학적 특성을 가지기 위해 다층으로 올려진 ITO 박막이 점진적인 굴절률 변화를 가지는 것을 필요로 한다. 점진적 굴절률 변화를 가진 무반사 박막이 실리콘 태양전지의 특성에 미치는 영향을 평가하기 위해 광전변환 효율을 측정하였다. 증착된 박막의 굴절률과 표면형상은 각각 타원편광분석과 Atomic Force Microscopy (AFM)을 통해 분석되었다. 또한, 소자의 단면형상은 Scanning Electron Microscopy (SEM)으로 측정되었다.

  • PDF

Electrical Properties of ITO Thin Film Deposited by Reactive DC Magnetron Sputtering using Various Sn Concentration Target (반응성 DC 마그네트론 스퍼터링법으로 증착한 ITO 박막의 전기적 특성 평가)

  • Kim, Min-Je;Jung, Jae-Heon;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.311-315
    • /
    • 2014
  • Indium tin oxide (ITO) thin films (30 nm) were deposited on PET substrate by reactive DC magnetron sputtering using In/Sn(2, 5 wt.%) metal alloy target without intentionally substrate heating during the deposition under different DC powers of 70 ~ 110 W. The electrical properties were estimated by Hall-effect measurements system. The resistivity of ITO thin film deposited using In/Sn (5 wt.%) metal alloy target at low DC power increased with increasing annealing time. However, they increased with increasing annealing time at high DC power. In the case of ITO (Sn 2 wt%), we can't find clear change in resistivity with increasing annealing time. However, carrier density and mobility showed difference behavior due to change of oxygen vacancy.

Efficiency enhancement of the organic light-emitting diodes by oxygen plasma treatment of the ITO substrate

  • Hong, J.W.;Oh, D.H.;Kim, C.H.;Kim, G.Y.;Kim, T.W.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.193-197
    • /
    • 2012
  • Oxygen plasma has been treated on the surface of indium-tin-oxide (ITO) to improve the efficiency of the organic light-emitting diodes (OLEDs) device. The plasma treatment was expected to inject the holes effectively due to the control of an ITO work-function and the reduction of surface roughness. To optimize the treatment condition, a surface resistance and morphology of the ITO surface were investigated. The effect on the electrical properties of the OLEDs was evaluated as a function of oxygen plasma powers (0, 200, 250, 300, and 450 W). The electrical properties of the devices were measured in a device structure of ITO/TPD/Alq3/BCP/LiF/Al. It was found the plasma treatment of the ITO surface affects on the efficiency of the device. The efficiency of the device was optimized at the plasma power of 250 W and decreased at higher power than 250 W. The maximum values of luminance, luminous power efficiency, and external quantum efficiency of the plasma treated devices increase by 1.4 times, 1.4 times, and 1.2 times, respectively, compared to those of the non-treated ones.

The electrical properties of PLZT thin films on ITO coated glass with various post-annealing temperature (ITO 기판에 제작된 PLZT 박막의 후열처리 온도에 따른 전기적 특성평가)

  • Cha, Won-Hyo;Youn, Ji-Eon;Hwang, Dong-Hyun;Lee, Chul-Su;Lee, In-Seok;Sona, Young-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • Lanthanum modified lead zirconate titanate ($Pb_{1.1}La_{0.08}Zr_{0.65}Ti_{0.35}O_3$) thin films were fabricated on indium doped tin oxide (ITO)-coated glass substrate by R.F magnetron sputtering method. The thin films were deposited at $500^{\circ}C$ and post-annealed with various temperature ($550-750^{\circ}C$) by rapid thermal annealing technique. The structure and morphology of the films were characterized with X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. The hysteresis loops and fatigue properties of thin films were measured by precision material analyzer. As the annealing temperature was increased, the remnant polarization value was increased from $10.6{\mu}C/cm^2$ to $31.4{\mu}C/cm^2$, and coercive field was reduced from 79.9 kV/cm to 60.9 kV/cm. As a result of polarization endurance analysis, the remnant polarization of PLZT thin films annealed at $700^{\circ}C$ was decreased 15% after $10^9$ switching cycles using 1MHz square wave form at ${\pm}5V$.

Preparation of Polymer Light Emitting Diodes with PFO-poss Organic Emission Layer on ITO/Glass Substrates (ITO/Glass 기판위에 PFO-poss 유기 발광층을 가지는 고분자 발광다이오드의 제작)

  • Yoo, Jae-Hyouk;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • Polymer light emitting diodes (PLEDs) with ITO/EDOT:PSS/PVK/PFO-poss/LiF/Al structures were prepared by the spin coating method on ITO(indium tin oxide)/glass substrates. PFO-poss[Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with poss] was used as light emitting polymer. PVK[poly(N-vinyl carbazole)] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] polymers were used as the hole injection and transport materials. The effect of PFO-poss concentration and the heating temperatures on the electrical and optical properties of the devices were investigated. At the same concentration of PFO-poss solution, the current density and luminance of PLED device tend to increase as the annealing temperature increase from $100^{\circ}C$ to $200^{\circ}C$. The maximum luminance was found to be about 958 cd/m2 at 13V for the PLED device with 1.0 wt% PFO-poss at the annealing temperature of $200^{\circ}C$. In addition, the PLED device showed bluish white emission through the strong greenish peak with 523 nm in wavelength. As the concentration of PFO-poss increase from 0.5 wt% to 1.0 wt% and temperature of PLEDs increase from $100^{\circ}C$ to $200^{\circ}C$, the emission color tend to be shifted from blue with (x, y) = (0.17,0.14) to bluish white with (x, y) : (0.29,0.41) in CIE color coordinate.

  • PDF

Analysis of Electrical Characteristics of Silicon Solar cell according to the ARC thickness using Medici Program (메디치 프로그램을 이용한 실리콘 솔라셀의 ARC 두께에 따른 전기적 특성 해석)

  • Kim, Jae-Gyu;Kim, Ji-Man;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3853-3858
    • /
    • 2010
  • This paper shows electrical analysis of the silicon solar cell according to the various ARC thickness using Medici program. we built a mesh structure of the solar cell that use ARC consisting of ITO(Indium-Tin-Oxide) transparent electrode, for the Medici modeling. About various oxide layer thickness of the ARC for 30 nm, 60 nm, 90 nm, changes of the I-V curve, Isc, Voc, transmittance and external collection efficiency performed according to wavelength of Incident ray. Simulation results show maximum power 22 mW/$cm^2$, fill factor 0.83 in condition of 60 nm ITO thickness.

Improved Light Output of GaN-Based Light-Emitting Diodes with ZnO Nanorod Arrays (ZnO 나노로드 배열에 의한 GaN기반 광다이오드의 광추출율 향상)

  • Lee, Sam-Dong;Kim, Kyoung-Kook;Park, Jae-Chul;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.59-60
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) with ZnO nanorod arrays on a planar indium tin oxide (ITO) transparent electrode were demonstrated. ZnO nanorods were grown into aqueous solution at low temperature of $90^{\circ}C$. Under 20 mA current injection, the light output efficiency of the LED with ZnO nanorod arrays on ITO was remarkably increased by about 40 % of magnitude compared to the conventional LED with only planar ITO. The enhancement of light output by the ZnO nanorod arrays is due to the formation of side walls and a rough surface resulting in multiple photon scattering at the LED surface.

  • PDF