• Title/Summary/Keyword: ITO(indium tin oxide)

Search Result 835, Processing Time 0.027 seconds

Effect of Laser Scanning Speed on the Laser Direct Patterning of T-shaped Indium Tin Oxide (ITO) Electrode for High Luminous AC Plasma Display Panels (고효율 플라즈마 디스플레이 패널을 위한 T-형 ITO 전극의 레이저 직접 패터닝시 레이저 스캔 속도의 영향)

  • Li, Zhao-Hui;Cho, Eou-Sik;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.133-136
    • /
    • 2010
  • Laser direct patterning is one of new methods which are able to replace a conventional photolithography. In order reduce the fabrication cost and to improve the luminous efficiency of AC plasma display panels (PDPs), in this experiment, a Q-switched Nd:$YVO_4$ laser was used to fabricate T-shaped indium tin oxide (ITO) display electrodes. For the laser beam scanning speed from 100 mm/sec to 800 mm/sec, T-shaped ITO patterns were clearly obtained and investigated. The experimental results showed that the optimized T-shaped ITO electrode was obtained when the lasers scanning speed was 300 mm/s.

Nondestructive measurement of sheet resistance of indium tin oxide(ITO) thin films by using a near-field scanning microwave microscope (근접장 마이크로파 현미경을 이용한 ITO 박막 면저항의 비파괴 관측 특성 연구)

  • Yun, Soon-Il;Na, Sung-Wuk;You, Hyun-Jun;Lee, Yeong-Joo;Kim, Hyun-Jung;Lee, Kie-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1042-1045
    • /
    • 2004
  • ITO thin films ($\sim150nm$) are deposited on glass substrates by different deposition condition. The sheet resistance of ITO thin films measured by using a four probe station. The microstructure of these films is determined using a X-ray diffractometer (XRD) and a scanning electron microscope (SEM) and a atomic force microscope (AEM). The sheet resistance of ITO thin films compared $s_11$ values by using a near field scanning microwave microscope.

  • PDF

Hyper Neutral Beam System for Damage Free Deposition of Indium-Tin Oxide Thin Films at Room Temperature

  • Yoo, Suk-Jae;Kim, Dae-Chul;Kim, Jong-Sik;Oh, Kyoung-Suk;Lee, Bong-Ju;Choi, Soung-Woong;Park, Young-Chun;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.190-192
    • /
    • 2007
  • A neutral beam system has been developed to produce hyperthermal neutral beams composed of indium, tin, and oxygen atoms. Using these hyper thermal neutral beams with energies in the range of tens of eV, high quality indium-tin oxide (ITO) thin films have been obtained on glass substrates at room temperature. The optical transmittance of the films is higher than 85% at a wavelength of 550 nm and the electrical resistivity is lower than $1{\times}10^{-3}{\Omega}cm$.

  • PDF

Transparent conductive oxide layers-embedding heterojunction Si solar cells (투명접합을 이용한 이종 태양전지)

  • Yun, Ju-Hyung;Kim, Mingeun;Park, Yun Chang;Anderson, Wayne A.;Kim, Joondong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An improved crystalline indium-tin-oxide (ITO) film was grown on an Al-doped ZnO (AZO) template upon hetero-epitaxial growth. This double TCO-layered Si solar cell provided significantly enhanced efficiency of 9.23 % as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides a good interface, resulting in the enhanced photovoltaic performances. It discusses TCO film arrangement scheme for efficient TCO-layered heterojunction solar cells.

  • PDF

Work Function Modification of Indium Tin Oxide Thin Films Sputtered on Silicon Substrate

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.351.2-351.2
    • /
    • 2014
  • Indium tin oxide (ITO) has a lot of variations of its properties because it is basically in an amorphous state. Therefore, the differences in composition ratio of ITO can result in alteration of electrical properties. Normally, ITO is considered as transparent conductive oxide (TCO), possessing excellent properties for the optical and electrical devices. Quantitatively, TCO has transparency over 80 percent within the range of 380nm to 780nm, which is visible light although its specific resistance is less than $10-3{\Omega}/cm$. Thus, the solar cell is the best example for which ITO has perfectly matching profile. In addition, when ITO is used as transparent conductive electrode, this material essentially has to have a proper work function with contact materials. For instance, heterojunction with intrinsic thin layer (HIT) solar cell could have both front ITO and backside ITO. Because each side of ITO films has different type of contact materials, p-type amorphous silicon and n-type amorphous silicon, work function of ITO has to be modified to transport carrier with low built-in potential and Schottky barrier, and approximately requires variation from 3 eV to 5 eV. In this study, we examine the change of work function for different sputtering conditions using ultraviolet photoelectron spectroscopy (UPS). Structure of ITO films was investigated by spectroscopic ellipsometry (SE) and scanning electron microscopy (SEM). Optical transmittance of the films was evaluated by using an ultraviolet-visible (UV-Vis) spectrophotometer

  • PDF

Plasma treatments of indium tin oxide(ITO) anodes in argon/oxygen to improve the performance and morphological property of organic light-emitting diodes(OLED) ($O_2$ : Ar 혼합가스 플라즈마로 ITO표면 처리한 OLED의 동작특성 향상과 표면개질에 관한 연구)

  • Seo, Yu-Suk;Moon, Dae-Gyu;Jo, Nam-Ihn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.67-68
    • /
    • 2008
  • A simple bi-layer structure of organic light emitting diode (OLED) was used to study the characteristics of anode preparation. Indium tin oxide (ITO) anode surface treatment of OLEDs was performed to get the optimum condition for the ITO anode. The ITO surface was treated by $O_2$ or $O_2$ / Ar mixed gas plasma with different processing time. The electrical characteristics of OLED were improved by plasma treatment. The operating voltage of OLED with $O_2$ or $O_2$/Ar mixed gas plasma treated anodes decreases from 8.2 to 3.4 V and 3.2V, respectively. The $O_2$ /Ar mixed gas plasma treatment results in better electrical property.

  • PDF

Effects of Post-Annealing on Crystallization and Electrical Behaviors of ITO Thin Films Sputtered on PES Substrates (PES 필름상에 스퍼터링한 ITO 박막의 열처리에 따른 결정화 거동 및 전기적 특성 변화)

  • So, Byung-Soo;Kim, Young-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.185-192
    • /
    • 2006
  • The effects of annealing on structural and electrical properties of ITO/PES (Indium Tin Oxide/Polyethersulfone) films was investigated. Amorphous ITO thin films were grown on plastic substrates, PES using low temperature DC magnetron sputtering. Various post annealing techniques were attempted to research variations of microstructure and electrical properties: i) conventional thermal annealing, ii) excimer laser annealing, iii) UV irradiation. The electrical properties were obtained using Hall effect measurements and DC 4-point resistance measurement. The microstructural features were characterized by FESEM, XRD, Raman spectroscopy in terms of morphology and crystallinity. Optimized UV treatment exhibits the enhanced conductivity and crystallinity, compared to those of conventional thermal annealing.

The Stress Distribution of Indium-tin-oxide (ITO) film on flexible Display Substrate by Bending (Flexible Display 기판 위의 Bending에 따른 ITO 필름의 Stress 분포)

  • 박준백;황정연;서대식;박성규;문대규;한정인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1115-1120
    • /
    • 2003
  • In this paper, we investigated the position dependent stress distribution of indium-tin-oxide (ITO) film on Polycarbonate (PC) substrate by external bending force. It was found that there are the maximum crack density at the center position and decreasing crack density as goes to the edge, In accordance with crack distribution, it was observed that the change of electrical resistivity of ITO islands is maximum at the center and decrease as goes to the edge. From the result that crack density is increasing at same island position as face plate distance (L) decreases, it is evident that the more stress is imposed on same island position as L decreases.

우수한 광 투과도 지닌 적외선 차폐 단열창호를 위한 상온 ITO 필름에 관한 연구

  • Lee, Dong Hoon;Park, Eun Mi;Suh, Moon Suhk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.342.2-342.2
    • /
    • 2014
  • IZO, ITO, ITO 등의 투명전극들 중 Indium Tin Oxide (ITO) 다른 전극에 비해 높은 광투과도와 낮은 저항으로 인하여 다양한 부분에서 널리 이용되고 있다. 본 연구에서는 우수한 투과도의 멀티 layer 단열 창호를 위한 film 개발을 위해 RF magnetron system을 이용하여 Sodalime Glass와 polyethylene terephthalate (PET) substrate에 ITO를 증착함으로써 전기적 광학적 특성을 조사하였다. 실험은 power 변화와 Ar, O2의 가스 분압비, Working Pressure의 변화를 변수로 두어 진행하였다. 측정은 Ellipsometry를 이용하여 광학적인 두께와 굴절률을 조사하였고 UV visible spectrometer를 통해 광학적인 투과도를 확인하였다. Power는 100 Watt 늘려가며 진행하였고 O2 유량의 변화에 따라 투과도와 면저항, 굴절률 특성이 달라짐을 확인할 수 있었다. O2의 유량에 따라 면저항이 줄어들다가 어느 정도 이상이 되면 급격히 증가함을 확인할 수 있었다. Working Pressure 변화에 따른 전기적 광학적 특성 또한 확인 하였다.

  • PDF

Thermal treatment effects of sputtered ITO(glass) (Sputtered ITO(glass)의 열처리 효과)

  • Kim, Ho-Soo;Jung, Soon-Won;Koo, Kyung-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.554-557
    • /
    • 2001
  • Indium Tin Oxide(ITO) thin films have been fabricated by the dc magnetron sputtering technique with a target of a mixture $In_{2}O_{3}$(90mol%) and $SnO_{2}$(10mol%). We prepared ITO thin films with substrate temperature 200 to $400^{\circ}C$ and annealing temperature 200 to $500^{\circ}C$. Good polycrystalline-structured ITO films with a low electrical resistivity of $3.4{\times}10^{-4}\Omega{\cdot}cm$ have been obtained. The visible light transmittance of all obtained films was over 80 %.

  • PDF