• Title/Summary/Keyword: ITER

Search Result 207, Processing Time 0.037 seconds

Tritium Fuel Cycle Technology of ITER Project (ITER 사업의 삼중수소 연료주기 기술)

  • Yun, Sei-Hun;Chang, Min-Ho;Kang, Hyun-Goo;Kim, Chang-Shuk;Cho, Seung-Yon;Jung, Ki-Jung;Chung, Hong-Suk;Song, Kyu-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2012
  • The ITER fuel cycle is designed for DT operation in equimolar ratio. It involves not only a group of fuelling system and torus cryo-pumping system of the exhaust gases through the divertor from the torus in tokamak plant, but also from the exhaust gas processing of the fusion effluent gas mixture connected to the hydrogen isotope separation in cryogenic distillation to the final safe storage & delivery of the hydrogen isotopes in tritium plant. Tritium plant system supplies deuterium and tritium from external sources and treats all tritiated fluids in ITER operation. Every operation and affairs is focused on the tritium inventory accountancy and the confinement. This paper describes the major fuel cycle processes and interfaces in the tritium plant in aspects of upcoming technologies for future hydrogen and/or hydrogen isotope utilization.

ITER 원격조작 시스템 소개

  • Hong, Gwon-Pyo;An, Sang-Bok;Ju, Yong-Seon;Lee, Hyeon-Gon;Jeong, Gi-Jeong
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2012.10a
    • /
    • pp.455-456
    • /
    • 2012
  • PDF

Output Control of ITER Vertical Stabilization Converter with Circulating Current Technique (순환전류를 이용한 ITER Vertical Stabilization 컨버터의 출력 제어)

  • Chung, Gyo-Bum;Ji, Jun-Keun;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.379-386
    • /
    • 2009
  • This paper investigates the operation of ITER(International Thermonuclear Experimental Reactor) Vertical Stabilization(VS) converter with circulating current. The VS converter has two subunits in parallel. The subunit is composed two back-to-back 12 pulse thyristor converter in series. The circulating current free technique can not always maintain the closed path for the load current because of a dead time zone of the converter operation at the region of the load current inversion. The complex circulation current technique for the load current inversion with VS converter can achieve the fast response and always maintain the closed path for the load curret. The paper proposes the new circulating current algorithm for the load current inversion of ITER VS converter and proves the performance of the circulating current technique with PSIM simulation study.