The purpose of this study is to develop and validate a model of firm's IT capability based on IT resources such as IT infrastructure, IT personnel, and IT routine. To do this, the study defined IT capability as a third-order factor model and identified three conceptual dimensions of IT capability: IT infrastructure flexibility, IT personnel expertise, IT resource management capability, IT resource management capability indicates a capacity generated by IT routines, a new IT resource type identified in this study. The validity of the proposed model is evaluated with 243 firm level data using LISREL. The results of confirmatory factor analysis(CFA) demonstrated that the model is highly reliable and valid. Additionally, it was found that IT routines have a high potential as a new IT resource category.
Hangul is a language that is composed of initial, medial, and final syllables. It has 11,172 characters. For this reason, the current method of designing all the characters by hand is very expensive and time-consuming. In order to solve the problem, this paper proposes an automatic Hangul font generation system and evaluates the standards for mapping Hangul characters to produce an effective automated Hangul font generation system. The system was implemented using character generation engine based on deep learning CycleGAN. In order to evaluate the criteria when mapping characters in pairs, each criterion was designed based on Hangul structure and character shape, and the quality of the generated characters was evaluated. As a result of the evaluation, the standards designed based on the Hangul structure did not affect the quality of the automated Hangul font generation system. On the other hand, when tried with similar characters, the standards made based on the shape of Hangul characters produced better quality characters than when tried with less similar characters. As a result, it is better to generate automated Hangul font by designing a learning method based on mapping characters in pairs that have similar character shapes.
The purpose of this study is to apply the PEOE class model that can enhance students' scientific creative problem-solving ability and self-directed learning ability in the middle school science subject and analyze the effects of it on students' long- and short-term retention, scientific creative problem-solving ability, and self-directed learning characteristics. And the paper has gained the following results: First, according to the result of analysis through the pre-test, post-test, and delay test to examine the effects of PEOE-based class on learners' long- and short-term retention, it is found to be statistically significant in the significant level of .05. In other words, the class using PEOE influences learners' short-term retention significantly, but it is even more effective in transmitting the concept that students acquire into their long-term memory. Second, according to the result of analysis through the pre-test and post-test to examine the effects of PEOE-based class on learners' scientific creative problem-solving ability, it is found to be statistically significant in the significant level of .05 in general. However, 'elaboration' and 'originality', the subfactors of scientific creative problem-solving ability, do not indicate significant effects. Third, according to the result of analysis through the pre-test and post-test to examine the effects of PEOE-based class on learners' self-directed learning characteristics, it is found to be statistically significant in the significant level of .05 as a whole. However, 'openness' and 'future-oriented self-understanding', the subfactors of self-directed learning characteristics, do not exert significant effects. Based on the above study results, it can be concluded that PEOE-based class is more effective for learners' academic achievement in science, scientific creative problem-solving ability, and self-directed learning characteristics than lecture-method instruction regarding the middle school science unit of 'The Properties of Air and Weather Change'.
Current evaluation practices for IT projects suffer from several problems, which include the difficulty of self-explanation for the evaluation results and the improperly scaled scoring system. This study aims to develop a methodology of opinion mining to extract key factors for the causal relationship analysis and to assess the feasibility of quantifying evaluation scores from text comments using opinion mining based on big data analysis. The research has been performed on the domain of publicly procured IT proposal evaluations, which are managed by the National Procurement Service. Around 10,000 sets of comments and evaluation scores have been gathered, most of which are in the form of digital data but some in paper documents. Thus, more refined form of text has been prepared using various tools. From them, keywords for factors and polarity indicators have been extracted, and experts on this domain have selected some of them as the key factors and indicators. Also, those keywords have been grouped into into dimensions. Causal relationship between keyword or dimension factors and evaluation scores were analyzed based on the two research models-a keyword-based model and a dimension-based model, using the correlation analysis and the regression analysis. The results show that keyword factors such as planning, strategy, technology and PM mostly affects the evaluation result and that the keywords are more appropriate forms of factors for causal relationship analysis than the dimensions. Also, it can be asserted from the analysis that evaluation scores can be composed or calculated from the unstructured text comments using opinion mining, when a comprehensive dictionary of polarity for Korean language can be provided. This study may contribute to the area of big data-based evaluation methodology and opinion mining for IT proposal evaluation, leading to a more reliable and effective IT proposal evaluation method.
Younghwa Lee;Il-Sik Chang;Suseong Oh;Youngjin Nam;Youngteuk Chae;Geonyoung Choi;Gooman Park
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권6호
/
pp.1516-1529
/
2023
In this paper, a motor gearbox fault-detection system based on a hierarchical flow-based model is proposed. The proposed system is used for the anomaly detection of a motion sound-based actuator module. The proposed flow-based model, which is a generative model, learns by directly modeling a data distribution function. As the objective function is the maximum likelihood value of the input data, the training is stable and simple to use for anomaly detection. The operation sound of a car's side-view mirror motor is converted into a Mel-spectrogram image, consisting of a folding signal and an unfolding signal, and used as training data in this experiment. The proposed system is composed of an encoder and a decoder. The data extracted from the layer of the pretrained feature extractor are used as the decoder input data in the encoder. This information is used in the decoder by performing an interlayer cross-scale convolution operation. The experimental results indicate that the context information of various dimensions extracted from the interlayer hierarchical data improves the defect detection accuracy. This paper is notable because it uses acoustic data and a normalizing flow model to detect outliers based on the features of experimental data.
Purpose: The purpose of this study was to examine effects of school-based alcohol prevention programs on drinking statuses of adolescents. Methods: The findings of this study was based on the data obtained from the '2015 11th Korea Youth Risk Behavior Web-based Survey. The number of study subjects were 68,043. Results: It was figured that 35.6% of the study subjects had experienced school-based alcohol prevention programs within the last 12 months. As the students got older, the chances to participate in the programs decreased (p<.01). For both middle and high school students, current drinking rates for the educated was lower than those of the uneducated students(6.6% vs 8.0%; 22.2% vs 25.9%) and it was statistically significant. A similar pattern was found for high-risk drinking rates. Those educated showed lower rates than the uneducated with statistical significance of p<.001. In addition, the educated had lower problem drinking rate than the uneducated for both middle (p<.05) and high school students (p<.001). The results of logistic regression analysis showed that school-based alcohol prevention programs had statistically significant effect on current drinking status of adolescents (p<.05). However, it had significant effect only on high-risk drinking status of high school students (p<.05) and had no effect on problem drinking. Conclusion: This study addressed effectiveness of school-based adolescent alcohol prevention programs and that it is important to develop means to implement school health education.
본 논문에서는 퍼지기반 Segment-Boost 방법을 소개하고, 이를 이용한 효과적인 얼굴인식 방법을 제안한다. 퍼지기반 Segment-Boost는 기존의 Segment-Boost가 갖고 있던 문제점과 성능의 한계요소들을 제거함으로써, 향상된 학습 성능뿐만 아니라 학습 성능의 안정성과 신뢰성을 보장하여 준다. 퍼지기반 Segment-Boost는 퍼지이론을 이용함으로써 서브벡터 선택개수를 최적화하고, 이를 통해 최상의 학습 성능이 유도될 수 있도록 설계되었다. 또한, 퍼지기반 Segment-Boost 내에서의 퍼지추론을 위해 본 논문에서 설계한 퍼지 제어기는 퍼지기반 Segment-Boost의 학습 성능을 측정하고, 최적화된 서브벡터 선택개수를 추론함으로써 서브벡터 선택개수를 제어한다. 시뮬레이션 결과, 본 논문에서 설계한 퍼지 제어기는 실제 최적의 서브벡터 선택개수에 매우 근접한 값을 추론하였다. 그 결과, 퍼지기반 Segment-Boost는 비교 실험한 boosting 방법보다 높은 얼굴인식률을 보여줌과 동시에 기존 Segment-Boost 만큼의 빠른 특징선택 속도를 유지하였고, 이러한 실험결과를 통해 퍼지기반 Segment-Boost의 학습 성능과 이를 이용한 특징선택 및 얼굴인식 방법에 있어서의 성능향상 및 안정성이 입증되었다.
This study aims to develop and apply a metaverse-based instructional design model for the education in science and technology. It analyzed the concept and characteristics of metaverse, existing non-contact education models, and major teaching strategies systematically. Based on the prior researches, an instructional design model using metaverse is developed that presents metaverse-related teaching strategies and design principles for the before-, during-, and after-lesson phases. Then, this model was applied to a project-based learning program, conducted a perception survey on instructors and learners, and revised the metaverse instructional design model based on the results of the survey. In the Metaverse Instructional Design Model, before-lesson phase is a physical and psychological preparation stage for class participation, which includes familiarization with the Metaverse learning environment, formation of expectations for education, and self-directed pre-learning. During the lesson, to effectively deliver the lesson content, it is necessary to build confidence in the learning environment, promote learning participation, provide reference materials, perform team projects and provide feedback, digest learning content, and transfer learning content. The after-lesson phase provides strategies for ongoing interaction between learners and mentors. This study introduces a new instructional design model that utilizes metaverse and shows the potential of metaverse-based education in science and technology. It also has important implications in that it provides practical guidelines for the effective design and implementation of metaverse-based education.
Purpose This study examines the influence of product development competence and IT competence on new product development (NPD) performance in the context of Korean companies. To achieve this goal, this study presents and empirically tests a model of how NPD competence and IT competence can be exploited to positively influence NPD performance through convergence capabilities. Design/methodology/approach The NPD competence are based on the research construct developed by Zhang et al. (2013). IT competence is based on the research construct developed by Lu and Ramamurthy(2011) and the NPD performance are based on the performance construct developed by Sivadas and Dwyer (2000). To complete the investigation, we conducted a survey from Korean 1000 big companies, which enrolled in Korean stock market. Randomly contacted 171 Korean companies, including firms of all sizes and types. To test our hypotheses, structured equation model (SEM) with partial least squares (PLS) method was employed. Findings The findings indicate that NPD competence and IT competence are antecedent to convergence capabilities, while IT competence is higher influence than NPD competence. Also, convergence capabilities has very significant relationship with NPD performance. This study provides a better understanding of the relationship between NPD competence, IT competence, convergence capabilities, and NPD performance. So companies should focus on improving NPD and IT competence on NPD performance through convergence capabilities.
인터넷 상에 산재해 있는 사진이나 비디오 등 시각 미디어 데이터를 효과적으로 검색하는 것은 전자 미술 박물관, 전자상거래, 전자 쇼핑몰 등 여러 응용 분야에서 중요한 일이다. 이러한 분야에서는 단순한 키워드 검색이 아닌 내용 기반 또는 의미 기반의 멀티미디어 검색을 필요로 한다. 인터넷 상의 시각 미디어를 효과적으로 검색하기 위해 제안된 선행 연구에서는 시각 미디어의 메타데이터와 온톨로지를 이용하고 또한 웹서비스를 이용하여 의미 기반의 검색을 수행한다. 본 연구에서는 인터넷 상에서 여러 시각 미디어 제공자와 이 제공자들의 정보를 가지고 있는 하나의 중계자가 존재하는 상황에서 시각 미디어를 효율적으로 검색하기 위한 전 단계로 적합한 서비스 제공자를 찾는 방법을 제안한다. 제안된 방법은 사용자의 질의에 적합한 제공자들과 그 순위를 효율적으로 얻기 위하여 온톨로지의 트리 구조를 이용한다. 온톨로지 트리에서 하위 노드의 크기와 자식 노드의 크기에 기반한 이 방법은 기존의 방법에 비해 효과적으로 제공자들간의 순위를 측정한다. 실험 결과 이 방법이 속도는 비슷하게 유지하면서 정확한 결과를 도출함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.