• Title/Summary/Keyword: IT-섬유

Search Result 3,693, Processing Time 0.043 seconds

Experimental and Phenomenological Modeling Studies on Variation of Fiber Volume Fraction during Resin Impregnation in VARTM (VARTM 공정에서 수지 함침에 따른 섬유체적율 변화의 측정 및 현상학적 모델링 연구)

  • Kim, Shin O;Seong, Dong Gi;Um, Moon Kwang;Choi, Jin Ho
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.340-347
    • /
    • 2015
  • As resin impregnates through the fiber preform in vacuum assisted resin transfer molding process, the volume of fibers is changed by expansion of fiber mat according to filling time. It causes not only the change in dimension but also the decrease of mechanical properties of the composite product. Moreover, it results in the economic loss by increase of the used amount of resin especially in the large product such as wind turbine blade. In this study, the ways to control fiber volume fraction were investigated by both the experimental and theoretical analyses on the expansion of fiber preform as the preform was impregnated by resin in the VARTM process. Two kinds of swelling stage were observed as flow front progressed, which was analyzed by comparing the experimental and simulation results. The process parameters are expected to be optimized by investigating the swelling behavior of fiber preform in the manufacturing process of the composite product.

Characteristics of Natural Hydraulic Lime Mortar Mixed with Basalt Fiber (바잘트 섬유를 혼합한 천연수경성석회 모르타르의 특성)

  • Moon, Ki-Yeon;Cho, Jin-Sang;Cho, Kye-Hong;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.61-68
    • /
    • 2015
  • In this study, the strength properties of NHL based mortar with blending basalt fiber were investigated. In the first step, it was evaluated that physical properties of NHL based mortar according to mixing method of four types of basalt fiber and then mixing method of one type was selected. As a result of assessment, it showed that the physical properties with mixing method of dry blending were better than that of wet blending and mixing method that basalt fiber pre-mixed with NHL for 5 min in a blender was selected and water and aggregate were finally added. Secondly, the investigation of blending fiber length on the compressive and flexural strength for basalt fiber reinforced NHL based mortars was carried out. The compressive strength was decreased with adding fiber, and the flexural strength was increased more than plain mortar. In the case of adding 6 mm fiber, the compressive and flexural strength were improved more than that of others.

Effect of Polypropylene Fiber on the Freeze-Thaw Damage of Mortar (모르타르의 동결융해 피해에 미치는 폴리프로필렌 섬유의 영향)

  • Yoo, Jae-Chul;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.438-444
    • /
    • 2019
  • In this study, the effect of polypropylene fiber on the freeze-thaw damage of mortar was evaluated experimentally. The effects of the reinforcing of polypropylene fiber on the compressive and bending performance of mortar after 300 cycles of freeze-thaw test were evaluated by comparing the normal mortar and the mortar with polyvinyl alcohol fiber. In addition, the mass loss, relative dynamic elastic modulus, and cumulated pore volume of mortar were measured by each cycle of freeze-thaw test. As a result, it was confirmed that the fiber reinforced mortar, regardless of the fiber type, was effective not only in maintaining the performance of the compressive strength and the bending strength but also suppressing the mass loss after the freeze-thaw test of 300 cycles. Meanwhile, it was confirmed that not only polyvinyl alcohol fibers but also polypropylene fibers can effectively act to suppress the damage of the mortar by freeze-thaw. However, in order to improve the freeze-thaw resistance of mortar mixed with polypropylene fiber, it is necessary to increase the bonding performance with the cement matrix which can be expected from polyvinyl alcohol fiber.

Characteristics of Compaction and Stregth for Synthetic Fiber Reinforced Soils (섬유 보강토의 다짐 및 강도 특성)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.93-98
    • /
    • 1999
  • The results of an experimental investigation on the characteristics of compaction and compressive strength of polypropylene fiber reinforced soil are presented in this paper. This study has been performed to obtain the physical properties of PFRS(polypropylene fiber reinforced soil) such as strain-stress relationships, OMC(optimum moisture contents) and ${\gamma}$dmax (maximum dry unit weight), with four different contents (i.e., 0.1%, 0.3%, 0.5% and 1.0% weights ) of mono-filament and fibrillated polypropylene fibers. From the compaction test results, it is found that OMC increased with the contents ratio of fiber, but ${\gamma}$dmax decreased. It means that the improvement of the workability and the reduction of the weight of embankment structures by the asddtion of the polypropylene fiber. And, from the compression test results, it is found that the additon of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil is more effective than the mono-filament polypropylene fiber reinforced soil.

  • PDF

Influence of Organic Fiber Kinds on Engineering Properties of Concrete (유기질 섬유 종류가 콘크리트의 공학적 특성에 미치는 영향)

  • Shin Hyun-Sup;Kim Kwang-Ryeon;Lee Gun-Cheol;Kim Byung-Gi;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.27-30
    • /
    • 2006
  • This study investigated influence of organic fiber type and contents on engineering properties of concrete. Test showed that increase of fiber contents decreased fluidity of fresh concrete and it was even worse in concrete adding cellulose fiber. It is decided that concrete containing more than proper level of fiber should be considered. In addition, concrete adding more fiber, nylon and cellulose, resulted in increase of air content but it was satisfied in aimed value. Bleeding capacity of concrete containing more fiber significantly declined and setting time of that was also slightly retarded. For the properties of strength, both compressive and tensile strength of fiber containing concrete were indicated at similar value to control concrete. However, it is clear that if those concrete containing fiber revised the value of increased air contents at fresh state, the strength value of that would be slightly increased.

  • PDF

Physical Properties According to the Covering Process and Heat Treatment Condition of the Thermoplastic Polyetherester Elastomeric Fibers (에스터계 열가소성 탄성 섬유의 커버링 공정 및 열처리 조건에 따른 물성 변화)

  • Kim, Jin Oh;Kim, Young Su;Park, Seong Woo
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.120-130
    • /
    • 2021
  • The condition of covering process using thermoplastic polyetherester elastomeric fibers(TPEE) was established. Two types of core yarn(TPEE, Spandex) and one type of effect yarn(PET) were used as materials to confirm the change in physical properties of covering yarn under various covering conditions. In addition, the effects of the treatment temperature on the elongation at break of covering yarn after heat treatment was analyzed. Through this analysis, it was confirmed that the elastic recovery of TPEE which is used as the core yarn was increased with the draw ratio, but decreases when it exceeds 1:2.5. And the elongation at break of the covering yarn could be increased by increasing the twist per meter of it. Additionally, it was confirmed that the elastic recovery of TPEE which is used as a core yarn, could be increased by applying heat treatment.

Effects of Ar+ ion Beam Irradiation on the Adhesion Forces between Carbon fibers and Thermosetting Resins (Ar+ 이온 빔 조사가 탄소섬유와 열경화성 수지 간 계면결합력에 미치는 영향)

  • 박수진;서민강;김학용;이경엽
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.718-727
    • /
    • 2002
  • In this work, an Ar+ beam was irradiated on carbon fiber surfaces to improve the interfacial shear strength (IFSS) of the resulting composites using an ion assisted reaction (IAR) method h single fiber pull-out test was executed to investigate the basic characteristics of the single Carbon fiber/matrix interface. Based on Greszczuk's geometrical model, the debonding force for pull-out of the fiber from the resins was discussed with the applied ion beam energy as a result, it was known that an ion beam treatment produced the functional groups on fiber surface and etching lines along the fiber axis direction, resulting in increasing the adhesion forces between fibers and matrix, which caused the improvement of the IFSS in a composite system. And, it was also found that the maximum IFSS was shown at 0.8 keV ion beam energy in this system.

An Experimental Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete Pavement (하이브리드 섬유로 보강된 콘크리트 포장의 역학적 특성 실험연구)

  • Park, Jong-Sup;Choi, Sung-Yong;Jung, Woo-Tai;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Cement concrete pavement offers long-term service life and excellent applicability for heavy traffic. It is easier to purchase and more durable and economical than the asphalt pavement. However, it is difficult to repair and rehabilitate compared to the asphalt pavement when it comes to the maintenance problem. Since the crack is the main reason of the damage of concrete pavement, it is necessary to control the early and long-term crack in the concrete pavement. In this experimental study, the basic performance tests have been carried out to investigate the effect of hybrid fibers which were composed of micro fibers with small diameter and high aspect ratio and macro fibers with large diameter and low aspect ratio on the concrete pavement, in which lower water ratio and larger aggregates were used compared to the general concrete mixture. The test results showed that the flexural strength and toughness of concrete pavement mixture have been increased with the use of hybrid fibers in the concrete pavement mixture, even though they were less effective compared to the normal concrete mixture. It was found that the hybrid fibers were effective to control the early shrinkage of the concrete pavement which is one of the main reasons of the damage in the concrete pavement.

Effect of Phosphorous-Based Flame Retardants on the Weight, Diameter, and Thermal Stability after Stabilization Processes of Rayon Fibers for Carbon Fibers (탄소섬유용 레이온섬유의 안정화공정 후 중량, 직경 및 열안정성에 미치는 인계 난연제의 영향)

  • Yoon Sung Bong;Cho Donghwan;Park Jong Kyoo
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.211-215
    • /
    • 2005
  • Stabilization process is absolutely necessary to convert the precursor fibers into chemically, physically, thermally and structurally stable carbon fibers. Especially, it is critically important for rayon fibers experiencing severe weight loss and thermal shrinkage occurring at the stabilization stage below $400^{\circ}C$. The stabilization of rayon fibers strongly depends not only on stabilization temperature but also on heating rate, chemical pre-treatment, atmosphere, and so on. In the present study, the weight loss, fiber diameter change occurred in the furnace during the stabilization process for rayon fibers produced with various heating rates and in the absence and presence of phosphorous-based flame retardants and the thermal stability of the stabilized fibers were investigated. The result indicates that the weight, diameter and thermal stability of the rayon fibers are significantly affected by the type and amount of the flame retardant used. It is also suggested that the pre-treatment of rayon fibers with a concentration lower than $3\;vol\%$ of phosphoric acid is most desirable for further carbonization process of stabilized rayon fibers.

Effects of Type of Synthetic Fiber on Material Properties of Cementless Composite (합성섬유 종류가 무시멘트 복합재료의 재료 거동에 미치는 영향)

  • Choi, Jeong-Il;Park, Se-Eon;Cha, Sang Lyul;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.255-261
    • /
    • 2019
  • The purpose of this study is to investigate effects of types of synthetic fibers on mechanical properties of alkali-activated slag composite. Materials and mixture proportion for matrix are determined, and the compressive strength, tensile performance, and cracking patterns of three composites reinforced by polypropylene, polyvinyl-alcohol, and polyethylene fibers. From the test results, it was observed that polyvinyl-alcohol fiber-reinforced composite and polyethylene fiber-reinforced composite had similar tensile performance. On the other hand, polypropylene fiber-reinforced composite showed low tensile performance. And it was exhibited that other factors except tensile strength and aspect ratio of fiber influence significantly tensile behavior of composite.