• Title/Summary/Keyword: IT evaluation

Search Result 30,307, Processing Time 0.062 seconds

Conservation of Removing Surface Contaminants on Silla monument at Jungsung-ri using Nd:YAG Laser Cleaning System (Nd/YAG레이저를 이용한 포항중성리신라비 표면오염물 제거와 보존처리)

  • Lee, Tae Jong;Kim, Sa Dug;Lee, Joo Wan;Oh, Jung Hyeon;Lee, Myeong Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.4
    • /
    • pp.142-153
    • /
    • 2011
  • 'Silla Monument Stone in Jungseong-ri, Pohang' was discovered in Pohang City, Gyeongsangbuk Province of Korea in 2009. The monument stone with irregular shape has dimensions of maximum height of 105cm, width of 47.6~49.6cm, thickness of 13.8~14.7cm and weight of 115kg. The results of monument stone was found to be granitite. Conservation treatment procedure was carried out in the order of production of Weathering map, cleaning of surface pollutants, consolidation using ethyl silicate. Black pollutant(crust) that covered more than 60% of the surface was analyzed first in order to remove the pollutants on the surface of the monumental stone by cleaning of surface pollutants using laser. The purpose on analysis was not only to verify the pollutants on the stone but also to carry out preliminary cleaning by securing rocks with same pollutant as the monumental stone. As the results of analysis using p-XRF(PMI. INNOV-X, USA) on the site, high level of Mn and Fe were detected, and the analysis of small section that had been fallen off with SEM/EDX for the purpose of quantitative analysis also detected high level of Mn. The Similar contaminants on Stone secured in the manner described above were made into 10 samples ($5cm{\times}5cm$) and was subjected to preliminary cleaning by Nd-YAG Laser(Laser&Physics, Korea). The results of surface observation through portable microscope during cleaning revealed that the power of 460mJ, wavelength of 1064nm and irradiation frequency of 1,800~2,300 per $25cm^2$ were most effective. Evaluation on the preservative treatment was made through confirmation of the extent of removal through color-difference meter measurement and component analysis prior to and following removal of the pollutants. As the result of color-difference meter measurement increase in the brightness was evidenced by the increase in the brightness ($L^*$)value from 33 to 49, and it was possible to ascertain the reduction in the pollutants as the content of Mn was reduced by about 80% from $50,000{\pm}5,000ppm$ to $10,000{\pm}2,000pmm$ from the result of component analysis.

Evaluation of the usefulness of prone position for reducing the image distortion due to respiration in PET/CT (PET/CT 검사 시 호흡에 따른 영상 왜곡 감소를 위한 엎드린 자세의 유용성 평가)

  • Lee, Han Wool;Kim, Jung Yul;Choi, Yong Hoon;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.59-63
    • /
    • 2019
  • Purpose The motion due to respiration of patients undergoing PET/CT is a cause of artifacts in image and registration error between PET and CT images. The degree of displacement and distortion for tumor, which affects the measurement of Standard Uptake Value (SUV) and lesion volume, is especially higher for tumors that is small or located at the base of lungs. The purpose of this study was to evaluate the usefulness of prone position in the correction of image distortion due to respiration of patients in PET/CT. Materials and Methods The imaging equipment used in this study was PET/CT Discovery 600 (GE Healthcare, MI, USA). 20 patients whose lesions were identified in the middle and lower lungs from May to August 2018 were enrolled in this study. After acquiring whole body image in the supine position, additional images of the lesion area were obtained in the prone position with the same conditions. SUVmax, SUVmean, and volume of the lesion were measured for each image, and the displacement of the lesion on PET and CT images were measured, compared, and analyzed. Results The SUVmax, SUVmean, and volume, and displacement of the lesion were $4.72{\pm}2.04$, $3.10{\pm}1.38$, $4.68{\pm}3.20$, and $4.64{\pm}1.88$, respectively for image acquired in the supine position and $5.89{\pm}2.42$, $3.97{\pm}1.65$, $2.13{\pm}1.09$, and $2.24{\pm}0.84$, respectively for image acquired in the prone position, indicating that, for all the lesions imaged, SUVmax and SUVmean were higher and volume and displacement were smaller in the images acquired in prone position compared to those acquired in supine one(p<0.05). Conclusion These results showed that the prone position PET/CT imaging improves the quality of the image by increasing the SUV of the lesion and reducing the respiratory artifacts caused by registration error between PET and CT images. It is considered that the PET/CT imaging in the prone position is helpful in the diagnosis of the disease as an economical and efficient methods that correct registration error for the lesions in basal lung and reduce artifacts.

A Study on the Change of Image Quality According to the Change of Tube Voltage in Computed Tomography Pediatric Chest Examination (전산화단층촬영 소아 흉부검사에서 관전압의 변화에 따른 화질변화에 관한 연구)

  • Kim, Gu;Kim, Gyeong Rip;Sung, Soon Ki;Kwak, Jong Hyeok
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.503-508
    • /
    • 2019
  • In short a binary value according to a change in the tube voltage by using one of VOLUME AXIAL MODE of scanning techniques of chest CT image quality evaluation in order to obtain high image and to present the appropriate tube voltage. CT instruments were GE Revolution (GE Healthcare, Wisconsin USA) model and Phantom used Pediatric Whole Body Phantom PBU-70. The test method was examined in Volume Axial mode using the pediatric protocol used in the Y university hospital of mass-produced material. The tube voltage was set to 70kvp, 80kvp, 100kvp, and mAs was set to smart mA-ODM. The mean SNR difference of the heart was $-4.53{\pm}0.26$ at 70 kvp, $-3.34{\pm}0.18$ at 80 kvp, $-1.87{\pm}0.15$ at 100 kvp, and SNR at 70 kvp was about -2.66 higher than 100 kvp and statistically significant (p<0.05) In the Lung SNR mean difference analysis, $-78.20{\pm}4.16$ at 70 kvp, $-79.10{\pm}4.39$ at 80 kvp, $-77.43{\pm}4.72$ at 100 kvp, and SNR at 70 kvp at about -0.77 higher than 100 kvp were statistically significant. (p<0.05). Lung CNR mean difference was $73.67{\pm}3.95$ at 70 kvp, $75.76{\pm}4.25$ at 80 kvp, $75.57{\pm}4.62$ at 100 kvp and 20.9 CNR at 80 kvp higher than 70 kvp and statistically significant (p<0.05) At 100 kvp of tube voltage, the SNR was close to 1 while maintaining the quality of the heart image when 70 kvp and 80 kvp were compared. However, there is no difference in SNR between 70 kvp and 80 kvp, and 70 kvp can be used to reduce the radiation dose. On the other and, CNR showed an approximate value of 1 at 70 kvp. There is no difference between 80 kvp and 100 kvp. Therefore, 80 kvp can reduce the radiation dose by pediatric chest CT. In addition, it is possible to perform a scan with a short scan time of 0.3 seconds in the volume axial mode test, which is useful for pediatric patients who need to move or relax.

Utility Evaluation of Supportive Devices for Interventional Lower Extremity Angiography (인터벤션 하지 혈관조영검사를 위한 보조기구의 유용성 평가)

  • Kong, Chang gi;Song, Jong Nam;Jeong, Moon Taek;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.613-621
    • /
    • 2019
  • The purpose of this study is to evaluate the effectiveness of supportive devices which are for minimizing the patient's movement during lower extremity angiography and to verify image quality of phantom by analyzing of Mask image, DSA image and Roadmap image into SNR and CNR. As a result of comparing SNR with CNR of mask image obtained by DSA technique using the phantom alone and phantom placed on the supportive devices, there was no significant difference between about 0~0.06 for SNR and about 0~0.003 for CNR. The study showed about 0.11~0.35 for SNR and 0.016~0.031 for CNR of DSA imaging by DSA technique about only water phantom of the blood vessel model and the water phantom placed on the device. Analyzing SNR and CNR of Roadmap technique about water phantom on the auxiliary device (hardboard paper, pomax, polycarbonate, acrylic) and water phantom alone, there was no significant difference between 0.02~0.05 for SNR and 0.002~0.004 for CNR. In conclusion, there was no significant difference on image quality by using supportive devices made by hardboard paper, pomax, polycarbonate or acryl regardless of whether using supportive devices or not. Supportive devices to minimize of the patient's movement may reduce the total amount of contrast, exam-time, radiation exposure and eliminate risk factors during angiogram. Supportive devices made by hardboard paper can be applied easily during angiogram due to advantages of reasonable price and simple processing. It is considered that will be useful to consider cost efficiency and types of materials and their properties in accordance with purpose and method of the study when the operator makes and uses supportive devices.

Detection Ability of Occlusion Object in Deep Learning Algorithm depending on Image Qualities (영상품질별 학습기반 알고리즘 폐색영역 객체 검출 능력 분석)

  • LEE, Jeong-Min;HAM, Geon-Woo;BAE, Kyoung-Ho;PARK, Hong-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.82-98
    • /
    • 2019
  • The importance of spatial information is rapidly rising. In particular, 3D spatial information construction and modeling for Real World Objects, such as smart cities and digital twins, has become an important core technology. The constructed 3D spatial information is used in various fields such as land management, landscape analysis, environment and welfare service. Three-dimensional modeling with image has the hig visibility and reality of objects by generating texturing. However, some texturing might have occlusion area inevitably generated due to physical deposits such as roadside trees, adjacent objects, vehicles, banners, etc. at the time of acquiring image Such occlusion area is a major cause of the deterioration of reality and accuracy of the constructed 3D modeling. Various studies have been conducted to solve the occlusion area. Recently the researches of deep learning algorithm have been conducted for detecting and resolving the occlusion area. For deep learning algorithm, sufficient training data is required, and the collected training data quality directly affects the performance and the result of the deep learning. Therefore, this study analyzed the ability of detecting the occlusion area of the image using various image quality to verify the performance and the result of deep learning according to the quality of the learning data. An image containing an object that causes occlusion is generated for each artificial and quantified image quality and applied to the implemented deep learning algorithm. The study found that the image quality for adjusting brightness was lower at 0.56 detection ratio for brighter images and that the image quality for pixel size and artificial noise control decreased rapidly from images adjusted from the main image to the middle level. In the F-measure performance evaluation method, the change in noise-controlled image resolution was the highest at 0.53 points. The ability to detect occlusion zones by image quality will be used as a valuable criterion for actual application of deep learning in the future. In the acquiring image, it is expected to contribute a lot to the practical application of deep learning by providing a certain level of image acquisition.

Evaluation of Disease Resistance of Rice Cultivar Developed in North Korea (북한에서 육성된 벼 품종의 병 저항성 검정)

  • Chung, Hyunjung;Kang, In Jeong;Yang, Jung-Wook;Roh, Jae-Hwan;Shim, Hyeong-Kwon;Heu, Sunggi
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.108-113
    • /
    • 2019
  • Almost 30% of arable lands of North Korea are covered with paddy rice. In rice cultivation of North Korea, rice blast disease is the most important fungal disease and bacterial leaf blight is the most important bacterial disease. Seven North Korean rice cultivars had been tested for the disease resistance against rice blast pathogen, Magnaporthe oryzae and bacterial leaf blight pathogen, Xanthomonas oryzae pv. oryzae. The responses of seven cultivars against 17 different M. oryzae races from South Korea had been quite different. Among seven cultivars, Giljoo1ho was very resistant to all 18 different M. oryzae isolates from South Korea, nevertheless KI or KJ. Pyungdo5ho was very susceptible, it showed susceptible responses to 8 out of 10 KI races and 7 out of 8 KJ races of M. oryzae isolated in South Korea. However, the response to bacterial leaf blight was different from the response to rice blast pathogen. Gijoo1ho, Wonsan69ho, Onpo1ho, and Pyungdo15ho were susceptible to KXO42 (K1) and KXO90 (K2), respectively. Pyungdo5ho was resistant to KXO85 (K1) and KXO19 (K3), and Pyungyang21ho was resistant to K1 races. Based on these results, Giljoo1ho can be a good resource for the breeding of resistant rice cultivar against M. oryzae isolates from South Korea.

Swimming Performance Evaluation of Four Freshwater Fish Species from the South Korea (국내에 서식하는 담수어류 4종에 대한 유영능력 평가)

  • Misheel, Bold;Kim, Kyu-Jin;Min, Kun-Woo;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.118-125
    • /
    • 2019
  • Swimming performance of fish is an important factor in the survival of fish. Also, swimming performance of fish is used in the form of habitat, or as a condition to consider when creating a fish ladder. However in Korea, researches in swimming performance of Korean freshwater fish were scarce and inadequate in some part, thus fish ladders were installed without considering their swimming performance. Therefore, in this study, we measured swimming performance of 4 Korean freshwater fish species to consider importance of swimming performance test. The fish used in this study were Carassius auratus, Zacco koreanus, Gnathopogon strigatus, Acheilognathus lanceolata intermedia species which was collected during October to November, 2018 at Geum River, and measurement for swimming speed of each fish was done by using $Loligo^{(R)}$ System, swim tunnel respirometer in January to February of 2019. The average value of the burst critical swimming speed ($U_{crit}$) for each species was $0.8{\pm}0.04m\;s^{-1}$ for C. auratus, $0.77{\pm}0.04m\;s^{-1}$ for Z. koreanus, $0.95{\pm}0.04m\;s^{-1}$ for G. strigatus, $0.73{\pm}0.03m\;s^{-1}$ for A. lanceolata intermedia and the average value of prolonged critical swimming speed was $0.54m\;s^{-1}$ for C. auratus, $0.67m\;s^{-1}$ for Z. koreanus, $0.7m\;s^{-1}$ for G. strigatus, $0.54m\;s^{-1}$ for A. lanceolata intermedia. Since the fish used in this experiment were collected from a small part of the water system in Korea and there were only 4 species, they were not enough to represent the species that inhabit the entire Korean water system. It will be necessary to continue evaluating the swimming performance of other freshwater species in Korea.

Evaluation of mechanical characteristics of marine clay by thawing after artificial ground freezing method (인공동결공법 적용 후 융해에 따른 해성 점토지반의 역학적 특성 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Son, Young-Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.31-48
    • /
    • 2019
  • The artificial ground freezing (AGF) method is a groundwater cutoff and/or ground reinforcement method suitable for constructing underground structures in soft ground and urban areas. The AGF method conducts a freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as excavation supports and/or cutoff walls. However, thermal expansion of the pore water during freezing may cause excessive deformation of the ground. On the other hand, as the frozen soil is thawed after completion of the construction, mechanical characteristics of the thawed soil are changed due to the plastic deformation of the ground and the rearrangement of soil fabric. This paper performed a field experiment to evaluate the freezing rate of marine clay in the application of the AGF method. The field experiment was carried out by circulating liquid nitrogen, which is a cryogenic refrigerant, through one freezing pipe installed at a depth of 3.2 m in the ground. Also, a piezo-cone penetration test (CPTu) and a lateral load test (LLT) were performed on the marine clay before and after application of the AGF method to evaluate a change in strength and stiffness of it, which was induced by freezing-thawing. The experimental results indicate that about 11.9 tons of liquid nitrogen were consumed for 3.5 days to form a cylindrical frozen body with a volume of about $2.12m^3$. In addition, the strength and stiffness of the ground were reduced by 48.5% and 22.7%, respectively, after a freezing-thawing cycle.

Comparison of Thyroid Doses for Shielding Material Changes in Neck Computed Tomography (Neck CT에서 차폐체 재료 변화에 따른 Thyroid 선량 비교 연구)

  • Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • With regard to current Neck CT, Bismuth shielding boards are often being used to reduce exposure to superficial organs such as the thyroid. However, beam hardening often occurs near superficial organs with Bismuth shielding boards and variations in CT Number, Noise, and Uniformity values occur severely. This study looked into the usefulness of shielding boards made from aluminum and silicone that can be easily obtained and have good machinability by comparing them to the existing Bismuth shielding board. An Aluminum 7.3mm and a Silicone 21.5mm were made with shielding ratios similar to that of the Bismuth(0.06 mmPb). TLD (TLD-100) was placed on the thyroid area of the Phantom (RS-108T) and 5 doses were measured for each. To compare image quality, CT Number and Noise variations in axial images of the thyroid area in Neck CT images were compared. Also, variations in CT Number, Noise, and Uniformity were measured in the AAPM phantom images and compared. In the results, when thyroid doses for each shielding board were compared, the Bismuth shielding board showed a 14% reduction, the Silicone 21.5mm showed a 15% reduction, and the Aluminum 7.3mm showed a 13% reduction compared to the Non-Shield. Statistically, there were no significant differences in comparison with the Bismuth shielding board. In CT Number variations of thyroid area images, variations were largest for the Bismuth shielding board. With Uniformity evaluations of the AAPM phantom, the Bismuth shielding board was found unsuitable and the Aluminum 7.3mm and Silicone 21.5mm satisfied the acceptance criteria. Research results show that the Aluminum 7.3mm and Silicone 21.5mm have a similar shielding ratio to the high-priced Bismuth shielding board that is currently being used clinically and in comparison tests of CT Number attenuation coefficient variations, Noise, and Uniformity which are phantom image evaluation items, they proved to be better than Bismuth shielding boards. If various shielding boards are made using aluminum and silicone, sized appropriately for superficial organs, it would be useful in decreasing patient doses.

Truncation Artifact Reduction Using Weighted Normalization Method in Prototype R/F Chest Digital Tomosynthesis (CDT) System (프로토타입 R/F 흉부 디지털 단층영상합성장치 시스템에서 잘림 아티팩트 감소를 위한 가중 정규화 접근법에 대한 연구)

  • Son, Junyoung;Choi, Sunghoon;Lee, Donghoon;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.111-118
    • /
    • 2019
  • Chest digital tomosynthesis has become a practical imaging modality because it can solve the problem of anatomy overlapping in conventional chest radiography. However, because of both limited scan angle and finite-size detector, a portion of chest cannot be represented in some or all of the projection. These bring a discontinuity in intensity across the field of view boundaries in the reconstructed slices, which we refer to as the truncation artifacts. The purpose of this study was to reduce truncation artifacts using a weighted normalization approach and to investigate the performance of this approach for our prototype chest digital tomosynthesis system. The system source-to-image distance was 1100 mm, and the center of rotation of X-ray source was located on 100 mm above the detector surface. After obtaining 41 projection views with ${\pm}20^{\circ}$ degrees, tomosynthesis slices were reconstructed with the filtered back projection algorithm. For quantitative evaluation, peak signal to noise ratio and structure similarity index values were evaluated after reconstructing reference image using simulation, and mean value of specific direction values was evaluated using real data. Simulation results showed that the peak signal to noise ratio and structure similarity index was improved respectively. In the case of the experimental results showed that the effect of artifact in the mean value of specific direction of the reconstructed image was reduced. In conclusion, the weighted normalization method improves the quality of image by reducing truncation artifacts. These results suggested that weighted normalization method could improve the image quality of chest digital tomosynthesis.