• Title/Summary/Keyword: IT Ecosystem

Search Result 2,290, Processing Time 0.025 seconds

A Study on Integrated Visualization and Mapping Techniques using the Geophysical Results of the Coastal Area of the Dokdo in the East Sea (독도 연안 해저 지구물리 자료의 통합 중첩 주제도 작성 연구)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2016
  • The purpose of this study is to integrate and visualize using mapping techniques based on precise seabed geomorphology, seafloor backscattering images and high-resolution underwater images of the nearshore area around the Dokdo, in the East Sea. We have been obtained the precise topography map using multibeam echosounder system around the nearshore area(~50 m) of the southern part of the Seodo. Side scan sonar survey for analysis seafloor backscattering images was carried out in the same area of topography data. High-resolution underwater images(zone(a), zone(b), zone(c)) were taken in significant habitat scope of the nearshore area of the southern part of the Seodo. Using the results of bathymetry, seafloor backscattering images, high-resolution underwater images, we performed an integrated visualization about the nearshore area of the Dokdo. The integrated visualizing techniques are possible to make the seabed characteristic mapping results of the nearshore area of the Dokdo. The integrated visualization results present more complex and reliable information than separate geological products for seabed environmental mapping study and it is useful to understand the relation between seafloor characteristics and topographic environments of the study area. The integrated visualizing techniques and mapping analysis need to study sustainably and periodically, for effective monitoring of the nearshore ecosystem of the Dokdo.

Changes of characteristics of livestock feces compost pile during composting period and land application effect of compost (축분 퇴비화과정 중 특성변화와 축분퇴비 이용효과)

  • Jeong, Kwang-Hwa;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.56-64
    • /
    • 2001
  • Composting of livestock feces is economic and safe process to decrease the possibility of direct leakage of organic pollutants to ecosystem from commercial and environmental point of view. This study was conducted with three different experiments related to composting of livestock feces. The purpose of experiment 1 was to investigate changes of characteristic of compost pile during composting period by low temperature in cold season. To compare composting effect of experimental compost pile and control pile exposed in cold air, experimental compost piles were warmed up by hot air until their temperatures were reached at $35^{\circ}C$. Sawdust, Ricehull and Ricestraw were mixed with livestock feces as bulking agent. The highest temperatures of compost pile during composting period were in sawdust, rice hull, rice straw, and control were $75^{\circ}C$, $76^{\circ}C$, $68^{\circ}C$, $45^{\circ}C$ respectively. Moisture content, pH, C/N and volume of compost were decreased during composting period. Experiment 2 was carried out to study utilization effect of compost by plant. A corn was cultivated for 3 years on fertilized land with compost and chemical fertilizer. The amount of harvest and nutrition value of corn were analyzed. In first year of trial, the amount of harvest of corn on land treated with compost was lower by 20% than that of land treated with chemical fertilizer. In second year, there was no difference in yield of com between compost and chemical fertilizer. In third year, the yield of com on land fertilized with compost was much more than that of land fertilized with chemical fertilizer. The purpose of experiment 3 was to estimate the decrease of malodorous gas originating from livestock feces by bio-filter. Four types of bio-filters filled with saw dust, night soil, fermented compost and leaf mold were manufactured and tested. Each bio-filter achieved 87-95% $NH_3$ removal efficiency. This performance was maintained for 10 days. The highest $NH_3$ removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of $NH_3$ by about 95%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The concentration of hydrogen sulfide and methyl mercaptan originating for compost were equal to or less than $3mg/{\ell}$ and $2mg/{\ell}$, respectively. After passing throughout the bio-filter, hydrogen sulfide and methyl mercaptan were not detected.

  • PDF

Study on Characteristics of Community and Ecology of Fishes in the Newly Constructed Gunwi Dam Reservoir (신규로 건설된 군위댐 호내 어류 군집 및 생태적 특성에 관한 연구)

  • Lee, Jin-Woong;Yoon, Ju-Duk;Kim, Jeong-Hui;Park, Sang-Hyeon;Baek, Seung-Ho;Chang, Kwang-Hyeon;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.219-228
    • /
    • 2015
  • To secure water resources, dams are normally constructed on the upper - middle part of streams, and it generates physical disturbances such as habitat alteration and stream fragmentation. Such construction can restrict movement of aquatic organisms, especially for freshwater fish which is one of top predator in aquatic ecosystem, and cause genetic fragmentation and community change. In this study, to investigate impact of habitat alteration after dam construction on freshwater fish, we monitored fish community changes, and compared fish fauna between dam reservoir and inflows. Additionally, movement characteristics and habitat boundaries of four species were identified by radio telemetry method. The study was conducted in the Gunwi Dam which was constructed in December 2010. Radio telemetry was applied to Pungtungia herzi, Zacco platypus (living lotic and lentic), Silurus asotus (lentic preferred species) and Zacco koreanus (lotic preferred species). The number of species was remarkably decreased (4 family, 10 species) comparing with before the dam construction (7 family, 15 species). Specifically, Coreoleuciscus splendidus, Niwaella multifasciata, Liobagrus mediadiposalis, Coreoperca herzi and Odontobutis platycephala that inhabit in the lotic environment were not collected in the study area. A total of 8 species were caught in both the dam reservoir and tributaries except 2 species (C. auratus and S. asotus). Sorenson's similarity between the reservoir and its tributaries was high (0.842). All of the radio tagged species stayed in the reservoir except S. asotus which moved to the tributary. These species mainly utilized the shallow littoral zone as a habitat. These results could be useful as a baseline data for efficient management of fishes in lakes.

Sensitivity of Simulated Water Temperature to Vertical Mixing Scheme and Water Turbidity in the Yellow Sea (수직 혼합 모수화 기법과 탁도에 따른 황해 수온 민감도 실험)

  • Kwak, Myeong-Taek;Seo, Gwang-Ho;Choi, Byoung-Ju;Kim, Chang-Sin;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.111-121
    • /
    • 2013
  • Accurate prediction of sea water temperature has been emphasized to make precise local weather forecast and to understand change of ecosystem. The Yellow Sea, which has turbid water and strong tidal current, is an unique shallow marginal sea. It is essential to include the effects of the turbidity and the strong tidal mixing for the realistic simulation of temperature distribution in the Yellow Sea. Evaluation of ocean circulation model response to vertical mixing scheme and turbidity is primary objective of this study. Three-dimensional ocean circulation model(Regional Ocean Modeling System) was used to perform numerical simulations. Mellor- Yamada level 2.5 closure (M-Y) and K-Profile Parameterization (KPP) scheme were selected for vertical mixing parameterization in this study. Effect of Jerlov water type 1, 3 and 5 was also evaluated. The simulated temperature distribution was compared with the observed data by National Fisheries Research and Development Institute to estimate model's response to turbidity and vertical mixing schemes in the Yellow Sea. Simulations with M-Y vertical mixing scheme produced relatively stronger vertical mixing and warmer bottom temperature than the observation. KPP scheme produced weaker vertical mixing and did not well reproduce tidal mixing front along the coast. However, KPP scheme keeps bottom temperature closer to the observation. Consequently, numerical ocean circulation simulations with M-Y vertical mixing scheme tends to produce well mixed vertical temperature structure and that with KPP vertical mixing scheme tends to make stratified vertical temperature structure. When Jerlov water type is higher, sea surface temperature is high and sea bottom temperature is low because downward shortwave radiation is almost absorbed near the sea surface.

Estimation and assessment of baseflow at an ungauged watershed according to landuse change (토지이용변화에 따른 미계측 유역의 기저유출량 산정 및 평가)

  • Lee, Ji Min;Shin, Yongchun;Park, Youn Shik;Kum, Donghyuk;Lim, Kyoung Jae;Lee, Seung Oh;Kim, Hungsoo;Jung, Younghun
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.303-318
    • /
    • 2014
  • Baseflow gives a significant contribution to stream function in the regions where climatic characteristics are seasonally distinct. In this regard, variable baseflow can make it difficult to maintain a stable water supply, as well as causing disruption to the stream ecosystem. Changes in land use can affect both the direct flow and baseflow of a stream, and consequently, most other components of the hydrologic cycle. Baseflow estimation depends on the observed streamflow in gauge watersheds, but accurate predictions of streamflow through modeling can be useful in determining baseflow data for ungauged watersheds. Accordingly, the objectives of this study are to 1) improve predictions of SWAT by applying the alpha factor estimated using RECESS for calibration; 2) estimate baseflow in an ungauged watershed using the WHAT system; and 3) evaluate the effects of changes in land use on baseflow characteristics. These objectives were implemented in the Gapcheon watershed, as an ungauged watershed in South Korea. The results show that the alpha factor estimated using RECESS in SWAT calibration improves the prediction for streamflow, and, in particular, recessions in the baseflow. Also, the changes in land use in the Gapcheon watershed leads to no significant difference in annual baseflow between comparable periods, regardless of precipitation, but does lead to differences in the seasonal characteristics observed for the temporal distribution of baseflow. Therefore, the Guem River, into which the stream from the Gapcheon watershed flows, requires strategic seasonal variability predictions of baseflow due to changes in land use within the region.

Assessment of Natural Environment - II. Based on the Plant Taxa of the Natural Parks and Ulleung island- (자연환경 평가 -II. 국내 자연공원과 울릉도의 식물군을 이용하여-)

  • 김철환;이희천
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.49-58
    • /
    • 2001
  • This study aims to compare and analyze the environment of natural parks and Ulleung island using the plant taxa classified by five degrees based on their distributional ranges. The scores differentially given based on the importance of each degree; taxa belonging to the fifth degree are given to 20 scores each, fourth 10, third 5, second 3.3, and first 2.5, respectively. The total assessed scores were ranked as Mt. Halla, Seorak, Jiri, Deokyu, Is. Ulleung, Mt. Sobaek, Odae, Palgong, Chink, Taebaek, Songni, Juwang, Gaya, Duryun, Gaeryong, Bukhan, Naebyeon, Worak, Naejang, Cheongryang, Naeyeon, Myeongii, Jokye, Mudeung, Wolchul, Geumo, Juheul, Biseul, Hwangmae, Jangan, Seonun, Moak, Seonam, Chilgap, and Gibaek, in order, respectively. It is suggested that the natural environments assessing more than 1,000 of total scores such as Mt. Halla and Mt. Deokyu are regarded as the most excellent ones, and those between 700 to 1,000 of total scores such as Is. Ulleung and Mt. Odae are regarded as relatively excellent ones. Natural parks scored between 500 to 700 such as Mt. Palgong and Mt. Gaya are regarded as good ones and parks scored between 300 to 500 such as Mt. Duryun and Mt. Mudeung are regarded as normal ones. The area assessed less than 300 of total scores such as Mt. Wolchul and Mt. Gibaek are regarded as the most inferior ones. The total scores of the national parks are generally higher than those of the provincial and county parks. In addition, Ulleung island has a total of 882.9 scores. Therefore, according to the IUCN the Ulleung island should be included in the criterion of the preservative model of natural ecosystem, suggested by Ministry of Environment. At the same time, Ulleung island should be included to the superior model of natural scenery resources by its uniqueness of topography, geography and natural environments. Ulleung island is assessed as having relatively excellent natural environments as compared with other national parks, suggesting that the island should be designated as a new national park.

  • PDF

Determining the Locations of Washland Candidates in the Four Major River Basins Using Spatial Analysis and Site Evaluation (공간분석 및 현장조사 평가 기법을 활용한 4대강 강변저류지 조성 후보지 선정)

  • Jeong, Kwang-Seuk;Shin, Hae-Su;Jung, Ju-Chul;Kim, Ik-Jae;Choi, Jong-Yun;Jung, In-Chul;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.44-54
    • /
    • 2010
  • In this study, a comprehensive exploration and evaluation of washland candidate locations by means of field monitoring as well as spatial analysis in six major river system (Han, Nakdong, Nam, Geum, Youngsan, and Seomjin Rivers). Washland(in other words, river detention basin) is an artificial wetland system which is connected to streams or rivers likely to riverine wetlands. Major purpose of washland creation is to control floodings, water supply and purification, providence of eco-cultural space to human and natural populations. Characteristics and functions of riverine wetlands can be expected as well, thus it is believed to be an efficient multi-purpose water body that is artificially created, in terms of hydrology and ecology. Geographical information and field monitoring results for the washland candidate locations were evaluated in 2009, with respect to optimal location exploration, ecosystem connectivity and educational-cultural circumstances. A total of $269\;km^2$ washland candidate locations were found from spatial analysis (main channel of Rivers South Han, 71.5; Nakdong 54.1; Nam, 2.3; Geum, 79.0; Youngsan 46.4; Seomjin 15.7), and they tended to be distributed in mid- to lower part of the rivers to which tributaries are confluent. Field monitoring at 106 sites revealed that some sites located in the Rivers Nam and Geum is appropriate for restoration or artificial creation as riverine wetlands. Several sites in the Nakdong and Seomjin Rivers were close to riverine wetlands (e.g., Upo), habitats of endangered species (e.g., otters), or adjacent to educational facility (e.g., museums) or cultural heritages (e.g., temples). Those sites can be utilized in hydrological, ecological, educational, and cultural ways when evidence of detailed hydrological evaluation is provided. In conclusion, determination of washland locations in the major river basins has to consider habitat expansion as well as hydrological function (i.e. flood control) basically, and further utility (e.g. educational function) will increase the values of washland establishment.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

Quaternary Geology of the Conjunction Area of the Yeongsan and Sampo rivers (영산강 하류와 삼포강 합류부 일대 제4기 지질 연구)

  • Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Nahm, Wook-Hyun;Lee, Heon-Jong;Lee, Jin-Young;Kim, Jin-Kwan;Oh, Keun-Chang
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.1
    • /
    • pp.1-17
    • /
    • 2005
  • This study aims to study the distribution and formation age of Quaternary deposits in the downstream of Yeongsan Estuarine River, encompassing Muan, Illo and Donggang counties. For this purpose the authors examine several borehole data, and step trench survey for excellent profiles was studied in connection with grain size population and magnetic susceptibility. As a result, it is interpreted that the coastal plain of the Yeongsan River was formed by sea level rise after Last Glacial Maximum(LGM). The fore edge/escarpment of coastal terraces distributed 7-10 m asl is assumed to be formed during the last glacial period, while the coastal terraces distributed above 7-10m asl formed during MIS 5a. In addition, the fore edge/escarpment of coastal terraces distributed above 15 m asl is presumed to be have been formed during the stadial of last interglacial period, while the formation age of coastal terraces distributed above 15m(asl) is assumed to be MIS 5e. This formation age can be estimated by the coastal terrace ages of the southeastern coast of Korean Peninsula. The characteristics of Quaternary deposits linked to paleolithic culture will eventually lead to the reconstruction of ecosystem environment of paleolithic peoples.

  • PDF

Toxic Effects of Phenol on Survival and Oxygen Consumption of the Abalone Juvenile, Haliotis discus hannai (참전복, Haliotis discus hannai 치패의 생존과 산소소비에 미치는 phenol의 독성 영향)

  • KIM Heung-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.496-504
    • /
    • 1997
  • This study was carried out to estimate toxic effects of phenol on survival and metabolism of the abalone juvenile, Haliotis discus hannai. The experiment was conducted by renewal bioassay procedure with different salinities at $20^{\circ}C$. The $LC_{50}$ of the juvenile exposed to phenol in the range of 0.5 and $100mg/\ell\;was\;34.3\~6.5mg/\ell\;at\;2.4\%_{\circ}\;and\;52.2\~9.3m/\ell\;at\;32\%_{\circ}$ salinity with exposure time from 24 hours to 96 hours. $LT_{50}$ was remarkablely reduced with increase of phenol conentration and decrease of salinity. Lethal toxicity or phenol was higher at low salinity than at high salinity. Therefore, salinity is likely to be one of factor to increase phenol toxicity. The oxygen consumption of the juvenile was reduced with increase of phenol concentration and with decrease of salinity. In spite of phenol toxicity, the oxygen consumption of the juvenile exposed to phenol of low concentration was high and similar as compared with that of control group. Survival rates of the abalone kept in phenol-free sea water after exposure to phenol concentration of 5, 10 and $20mg/\ell$ for 96 hours were reduced with decrease of salinity. Durations required to recover the normal metabolic rate of the juvenile, which was exposed to phenol concentration of 5, 10 and $20mg/\ell$ for 96 hours, were made longer with increasing phenol concentration. In the case of the juvenile exposed to sublethal concentration of phenol for 15 days, it were elongated as compared with that of the abalone exposed to phenol concentration caused acute toxicity. The result of this experiment indicated that relatively low concentration of phenol can impact on the abalone juvenile in marine ecosystem.

  • PDF