• Title/Summary/Keyword: IT Design

Search Result 60,487, Processing Time 0.09 seconds

Enhanced immunity effect of Korean Red Ginseng capsule: A randomized, double-blind and placebo-controlled clinical trial

  • Yi Yang;Jing Li;Shengyuan Zhou;Daoyan Ni;Cailing Yang;Xu Zhang;Jian Tan;Jingrui Yan;Na Wang
    • Journal of Ginseng Research
    • /
    • v.48 no.5
    • /
    • pp.504-510
    • /
    • 2024
  • Background: As a physiological function of body, immunity can maintain health by identifying itself and excluding others. With economic development and increasingly fierce social competition, the number of sub-healthy population is gradually increasing, and the most basic problem exposed is human hypoimmunity. Hypoimmunity can be manifested as often feeling tired, catching colds, mental depression, etc. In order to enhance immunity, eating healthy foods with the effect of enhancing immunity may become an effective choice. KRG has pharmacological effects of enhancing immunity. Because the screening and evaluation method of immune population are not unified, there are relatively few KRG immunity tests for sub-health population. It is of great significance to study the effect of KRG on people with hypoimmunity to improve sub-health status. Methods: This was a 180-day, randomized, double-blind, placebo-controlled clinical trial. According to the trial scheme design, 119 qualified subjects were included and randomly divided into the test group taking KRG and the placebo control group. Subjects need to check safety indicators (blood pressure and heart rate, blood routine, liver and kidney function, urine routine and stool routine) and efficacy indicators (main and secondary) inspection at baseline, efficacy indicators inspection during the mid-term of the test (90th days of administration), safety and efficacy indicators inspection after the test (180th days of administration). Results: After the test, the safety indicators of placebo control group and KRG test group were basically within the normal range, and there is no significant difference in fireness score between the two groups. Through follow-up interviews, it was found that the subjects in the test group and the control group had no adverse reactions and allergic reactions such as nausea, flatulence, diarrhea, and abdominal pain during the test period. Self-comparison of the test group, the results of the main efficacy indicators: (1) immune related health scores were significantly improved in the mid-term and after the test (P < 0.01), (2) CD3 and CD4/CD8 increased significantly after the test (P < 0.05), (3) IgG, IgA, IgM and WBC increased significantly in the mid-term and after the test (P < 0.01); the results of the secondary efficacy indicators: (1) TNF-α decreased significantly in the midterm (P < 0.05), IFN-γ decreased significantly in the mid-term (P < 0.01), (2) NK increased significantly in the mid-term and after the test (P < 0.05), (3) monocyte increased significantly in the mid-term and after the test (P < 0.01). Inter-group comparison of the test group and the control group, the results of the main efficacy indicators: (1) immune related health scores were higher than that of the control group in the mid-term and after the test (P < 0.01), (2) IgA of the test group was higher than that of the control group in the mid-term and after the test (P < 0.05); the results of the secondary efficacy indicators: (1) WBC of the test group was higher than that of the control group in the mid-term (P < 0.05); (2) monocytes of the test group were higher than that of the control group in the mid-term and after the test (P < 0.05), neutrophils of the test group were higher than that of the control group in the mid-term (P < 0.05). Conclusion: Taking KRG has no adverse effects on the health of the subjects. According to the standard of clinical trial scheme, the immune related health scores and IgA in the main efficacy indicators were positive, which shows that KRG is helpful in enhancing human immunity.

Studies on the Roadside Revegetation and Landscape Reconstruction Measures (도로녹화(道路綠化) 및 도로조경기술개발(道路造景技術開発)에 관(関)한 연구(硏究))

  • Woo, Bo Myeong;Son, Doo Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.48 no.1
    • /
    • pp.1-24
    • /
    • 1980
  • One of the most important basic problems for developing the new techniques in the field of road landscape planting practices in Korea, is to clarify, analyse, and evaluate the existing technical level through actual field survey on the various kinds of planting techniques. This study is, therefore, aimed at the good grasp of detail essences of the existing level of road landscape planting techniques through field investigations of the executed sites. In this study, emphasized efforts are made to the detail analysis and systematic rearrangements of such main subjects as; 1) principles and functions of the road landscape planting techniques; 2) essential elements in planning of it; 3) advanced practices in execution of planting of it; 4) and improved methods in maintenance of plants and lands as an entire system of road landscape planting techniques. The road landscape planting techniques could be explained as the planting and landscaping practices to improve the road function through introduction of plants (green-environment) on and around the roads. The importances of these techniques have been recognized by the landscape architects and road engineers, and they also emphasize not on]y the establishment of road landscape features but also conservation of human's life environment by planting of suitable trees, shrubs, and other vegetations around the roads. It is essentially required to improve the present p]anting practices for establishment of the beautiful road landscape features, specially in planning, design, execution, establishment, and maintenance of plantings of the environmental conservation belts, roadside trees, footpathes, median strips, traffic islands, interchanges, rest areas, and including the adjoining route roads.

  • PDF

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

A Study on Public Interest-based Technology Valuation Models in Water Resources Field (수자원 분야 공익형 기술가치평가 시스템에 대한 연구)

  • Ryu, Seung-Mi;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.177-198
    • /
    • 2018
  • Recently, as economic property it has become necessary to acquire and utilize the framework for water resource measurement and performance management as the property of water resources changes to hold "public property". To date, the evaluation of water technology has been carried out by feasibility study analysis or technology assessment based on net present value (NPV) or benefit-to-cost (B/C) effect, however it is not yet systemized in terms of valuation models to objectively assess an economic value of technology-based business to receive diffusion and feedback of research outcomes. Therefore, K-water (known as a government-supported public company in Korea) company feels the necessity to establish a technology valuation framework suitable for technical characteristics of water resources fields in charge and verify an exemplified case applied to the technology. The K-water evaluation technology applied to this study, as a public interest goods, can be used as a tool to measure the value and achievement contributed to society and to manage them. Therefore, by calculating the value in which the subject technology contributed to the entire society as a public resource, we make use of it as a basis information for the advertising medium of performance on the influence effect of the benefits or the necessity of cost input, and then secure the legitimacy for large-scale R&D cost input in terms of the characteristics of public technology. Hence, K-water company, one of the public corporation in Korea which deals with public goods of 'water resources', will be able to establish a commercialization strategy for business operation and prepare for a basis for the performance calculation of input R&D cost. In this study, K-water has developed a web-based technology valuation model for public interest type water resources based on the technology evaluation system that is suitable for the characteristics of a technology in water resources fields. In particular, by utilizing the evaluation methodology of the Institute of Advanced Industrial Science and Technology (AIST) in Japan to match the expense items to the expense accounts based on the related benefit items, we proposed the so-called 'K-water's proprietary model' which involves the 'cost-benefit' approach and the FCF (Free Cash Flow), and ultimately led to build a pipeline on the K-water research performance management system and then verify the practical case of a technology related to "desalination". We analyze the embedded design logic and evaluation process of web-based valuation system that reflects characteristics of water resources technology, reference information and database(D/B)-associated logic for each model to calculate public interest-based and profit-based technology values in technology integrated management system. We review the hybrid evaluation module that reflects the quantitative index of the qualitative evaluation indices reflecting the unique characteristics of water resources and the visualized user-interface (UI) of the actual web-based evaluation, which both are appended for calculating the business value based on financial data to the existing web-based technology valuation systems in other fields. K-water's technology valuation model is evaluated by distinguishing between public-interest type and profitable-type water technology. First, evaluation modules in profit-type technology valuation model are designed based on 'profitability of technology'. For example, the technology inventory K-water holds has a number of profit-oriented technologies such as water treatment membranes. On the other hand, the public interest-type technology valuation is designed to evaluate the public-interest oriented technology such as the dam, which reflects the characteristics of public benefits and costs. In order to examine the appropriateness of the cost-benefit based public utility valuation model (i.e. K-water specific technology valuation model) presented in this study, we applied to practical cases from calculation of benefit-to-cost analysis on water resource technology with 20 years of lifetime. In future we will additionally conduct verifying the K-water public utility-based valuation model by each business model which reflects various business environmental characteristics.

Consumer Awareness and Evaluation of Retailers' Social Responsibility: An Exploratory Approach into Ethical Purchase Behavior from a U.S Perspective (소비자인지도화령수상사회책임(消费者认知度和零售商社会责任): 종미국시각출발적도덕구매행위적탐색성연구(从美国视角出发的道德购买行为的探索性研究))

  • Lee, Min-Young;Jackson, Vanessa P.
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.1
    • /
    • pp.49-58
    • /
    • 2010
  • Corporate social responsibility has become a very important issue for researchers (Greenfield, 2004; Maignan & Ralston, 2002; McWilliams et al., 2006; Pearce & Doh 2005), and many consider it necessary for businesses to define their role in society and apply social and ethical standards to their businesses (Lichtenstein et al., 2004). As a result, a significant number of retailers have adopted CSR as a strategic tool to promote their businesses. To this end, this study sought to discover U.S. consumers' attitudes and behavior in ethical purchasing and consumption based on their subjective perception and evaluation of a retailer. The objectives of this study include: 1) determine the participants awareness of retailers corporate social responsibility; 2) assess how participants evaluate retailers corporate social responsibility; 3) examine whether participants evaluation process of retailers CSR influence their attitude toward the retailer; and 4) assess if participants attitude toward the retailers CSR influence their purchase behavior. This study does not focus on actual retailers' CSR performance because a consumer's decision making process is based on an individual assessment not an actual fact. This study examines US college students' awareness and evaluations of retailers' corporate social responsibility (CSR). Fifty six college students at a major Southeastern university participated in the study. The age of the participants ranged from 18 to 26 years old. Content analysis was conducted with open coding and focused coding. Over 100 single-spaced pages of written responses were collected and analyzed. Two steps of coding (i.e., open coding and focused coding) were conducted (Esterberg, 2002). Coding results and analytic memos were used to understand participants' awareness of CSR and their ethical purchasing behavior supported through the selection and inclusion of direct quotes that were extracted from the written responses. Names used here are pseudonyms to protect confidentiality of participants. Participants were asked to write about retailers, their aware-ness of CSR issues, and to evaluate a retailer's CSR performance. A majority (n = 28) of respondents indicated their awareness of CSR but have not felt the need to act on this issue. Few (n=8) indicated that they are aware of this issue but not greatly concerned. Findings suggest that when college students evaluate retailers' CSR performance, they use three dimensions of CSR: employee support, community support, and environmental support. Employee treatment and support were found as an important criterion in evaluation of retailers' CSR. Respondents indicated that their good experience with a retailer as an employee made them have a positive perception and attitude toward the retailer. Regarding employee support four themes emerged: employee rewards and incentives based on performance, working environment, employee education and training program, and employee and family discounts. Well organized rewards and incentives were mentioned as an important attribute. The factors related to the working environment included: how well retailers follow the rules related to working hours, lunch time and breaks was also one of the most mentioned attributes. Regarding community support, three themes emerged: contributing a percentage of sales to the local community, financial contribution to charity organizations, and events for community support. Regarding environments, two themes emerged: recycling and selling organic or green products. It was mentioned in the responses that retailers are trying to do what they can to be environmentally friendly. One respondent mentioned that the company is creating stores that have an environmentally friendly design. Information about what the company does to help the environment can easily be found on the company’s website as well. Respondents have also noticed that the stores are starting to offer products that are organic and environmentally friendly. A retailer was also mentioned by a respondent in this category in reference to how the company uses eco-friendly cups and how they are helping to rebuild homes in New Orleans. The respondents noticed that a retailer offers reusable bags for their consumers to purchase. One respondent stated that a retailer uses its products to help the environment, through offering organic cotton. After thorough analysis of responses, we found that a participant's evaluation of a retailers' CSR influenced their attitudes towards retailers. However, there was a significant gap between attitudes and purchasing behavior. Although the participants had positive attitudes toward retailers CSR, the lack of funds and time influenced their purchase behavior. Overall, half (n=28) of the respondents mentioned that CSR performance affects their purchasing decisions making when shopping. Findings from this study provide support for retailers to consider their corporate social responsibility when developing their image with the consumer. This study implied that consumers evaluate retailers based on employee, community and environmental support. The evaluation, attitude and purchase behavior of consumers seem to be intertwined. That is, evaluation is based on the knowledge the consumer has of the retailers CSR. That knowledge may influence their attitude toward the retailer and thus influence their purchase behavior. Participants also indicated that having CSR makes them think highly of the retailer, but it does not influence their purchase behavior. Price and convenience seem to surpass the importance of CSR among the participants. Implications, recommendations for future research, and limitations of the study are also discussed.

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.

The Effect of Active Senior's Career Orientation and Educational Entrepreneurship Satisfaction on Entrepreneurship Intention and Entrepreneurship Preparation Behavior (액티브 시니어의 경력지향성과 창업교육 만족이 창업의지와 창업준비행동에 미치는 영향)

  • Park, Joungbum;Yang, Youngseok;Kim, Myungseuk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.1
    • /
    • pp.285-301
    • /
    • 2020
  • Looking at the problem of aging in the nation from a demographic perspective, it is not a problem of the overall population, but of the structure of the population. It is the baby boomer and post-baby boomers, the largest population in the country. Baby boomers were born between 1955 and 1963, and currently have a population of 7001,333, which is 13.6 percent (as of 2015). The Post-Baby Boomer generation was born between 1964 and 1974, with a total population of 9,567,171, accounting for 18.8 percent of the total population. In particular, baby boomers and post-baby boomers (32.4% of the total population) have begun to retire or will retire soon. The average life expectancy continues to increase due to the development of medical technology, and the falling birth rate of newborns and the declining population of the production population are darkening the domestic economy. In a policy proposal aimed at easing the nation's falling economic growth rate, women's participation rate is as high as Sweden and men's efforts to increase it as high as Japan's, while the elderly rate is desirable to maintain Korea's high level. This is because the expansion of the elderly generation's participation in economic activities could ease a sharp drop in economic growth and reduce the burden of supporting the elderly population. The study, based on this social problem awareness and problem solving plan, looks at the relationship between career orientation and satisfaction in start-up education based on the diverse career base of active seniors, and also suggests the importance of customized start-up education on the diversity of active seniors by clarifying the relationship between them, and suggests the desirable direction of senior start-up policy design, funding, and start-up education. Based on the theoretical background, the concept of five factors was defined: active senior, career-oriented, satisfaction level of start-up education, willingness to start a business, and the concept definition of an active senior, which is particularly key to the baby boomers in their 50s and 60s, is generally regarded as a source of consumption or welfare benefits, but in this study, the concept of active start-up is reflected in the domestic start-up market by young people in their 40s, 50s and 60s. As a result of a hypothesis test. Hypothesis 1 and Hypothesis 5: Career orientation has been verified to affect the willingness to start a business and the behavior of preparation for a start-up. Hypothesis 3: The willingness to start a business has been verified as having an effect between startup preparation actions. Hypothesis 4: The satisfaction level of start-up education has been verified to affect start-up preparation behavior. However, hypothesis 2: The satisfaction level of education for start-ups does not affect the willingness to start a business. Such results can be inferred that satisfaction in start-up education does not have a direct effect on the will to start a business and increases the will to start a business through the influence of personal career orientation.

The Usefulness of Product Display of Online Store by the Product Type of Usage Situation - Focusing on the moderate effect of the product portability - (사용상황별 제품유형에 따른 온라인 점포 제품디스플레이의 유용성 - 제품 휴대성의 조절효과를 중심으로 -)

  • Lee, Dong-Il;Choi, Seung-Hoon
    • Journal of Distribution Research
    • /
    • v.16 no.2
    • /
    • pp.1-24
    • /
    • 2011
  • 1. Introduction: Contrast to the offline purchasing environment, online store cannot offer the sense of touch or direct visual information of its product to the consumers. So the builder of the online shopping mall should provide more concrete and detailed product information(Kim 2008), and Alba (1997) also predicted that the quality of the offered information is determined by the post-purchase consumer satisfaction. In practice, many fashion and apparel online shopping malls offer the picture information with the product on the real person model to enhance the usefulness of product information. On the other virtual product experience has been suggested to the ways of overcoming the online consumers' limited perceptual capability (Jiang & Benbasat 2005). However, the adoption and the facilitation of the virtual reality tools requires high investment and technical specialty compared to the text/picture product information offerings (Shaffer 2006). This could make the entry barrier to the online shopping to the small retailers and sometimes it could be demanding high level of consumers' perceptual efforts. So the expensive technological solution could affects negatively to the consumer decision making processes. Nevertheless, most of the previous research on the online product information provision suggests the VR be the more effective tools. 2. Research Model and Hypothesis: Presented in

    , research model suggests VR effect could be moderated by the product types by the usage situations. Product types could be defined as the portable product and installed product, and the information offering type as still picture of the product, picture of the product with the real-person model and VR. 3. Methods and Results: 3.1. Experimental design and measured variables We designed the 2(product types) X 3(product information types) experimental setting and measured dependent variables such as information usefulness, attitude toward the shopping mall, overall product quality, purchase intention and the revisiting intention. In the case of information usefulness and attitude toward the shopping mall were measured by multi-item scale. As a result of reliability test, Cronbach's Alpha value of each variable shows more than 0.6. Thus, we ensured that the internal consistency of items. 3.2. Manipulation check The main concern of this study is to verify the moderate effect by the product type of usage situation. indicates that our experimental manipulation of the moderate effect of the product type was successful. 3.3. Results As
    indicates, there was a significant main effect on the only one dependent variable(attitude toward the shopping mall) by the information types. As predicted, VR has highest mean value compared to other information types. Thus, H1 was partially supported. However, main effect by the product types was not found. To evaluate H2 and H3, a two-way ANOVA was conducted. As
    indicates, there exist the interaction effects on the three dependent variables(information usefulness, overall product quality and purchase intention) by the information types and the product types. As predicted, picture of the product with the real-person model has highest mean among the information types in the case of portable product. On the other hand, VR has highest mean among the information types in the case of installed product. Thus, H2 and H3 was supported. 4. Implications: The present study found the moderate effect by the product type of usage situation. Based on the findings the following managerial implications are asserted. First, it was found that information types are affect only the attitude toward the shopping mall. The meaning of this finding is that VR effects are not enough to understand the product itself. Therefore, we must consider when and how to use this VR tools. Second, it was found that there exist the interaction effects on the information usefulness, overall product quality and purchase intention. This finding suggests that consideration of usage situation helps consumer's understanding of product and promotes their purchase intention. In conclusion, not only product attributes but also product usage situations must be fully considered by the online retailers when they want to meet the needs of consumers.

  • PDF
  • Forecasting Substitution and Competition among Previous and New products using Choice-based Diffusion Model with Switching Cost: Focusing on Substitution and Competition among Previous and New Fixed Charged Broadcasting Services (전환 비용이 반영된 선택 기반 확산 모형을 통한 신.구 상품간 대체 및 경쟁 예측: 신.구 유료 방송서비스간 대체 및 경쟁 사례를 중심으로)

    • Koh, Dae-Young;Hwang, Jun-Seok;Oh, Hyun-Seok;Lee, Jong-Su
      • Journal of Global Scholars of Marketing Science
      • /
      • v.18 no.2
      • /
      • pp.223-252
      • /
      • 2008
    • In this study, we attempt to propose a choice-based diffusion model with switching cost, which can be used to forecast the dynamic substitution and competition among previous and new products at both individual-level and aggregate level, especially when market data for new products is insufficient. Additionally, we apply the proposed model to the empirical case of substitution and competition among Analog Cable TV that represents previous fixed charged broadcasting service and Digital Cable TV and Internet Protocol TV (IPTV) that are new ones, verify the validities of our proposed model, and finally derive related empirical implications. For empirical application, we obtained data from survey conducted as follows. Survey was administered by Dongseo Research to 1,000 adults aging from 20 to 60 living in Seoul, Korea, in May of 2007, under the title of 'Demand analysis of next generation fixed interactive broadcasting services'. Conjoint survey modified as follows, was used. First, as the traditional approach in conjoint analysis, we extracted 16 hypothetical alternative cards from the orthogonal design using important attributes and levels of next generation interactive broadcasting services which were determined by previous literature review and experts' comments. Again, we divided 16 conjoint cards into 4 groups, and thus composed 4 choice sets with 4 alternatives each. Therefore, each respondent faces 4 different hypothetical choice situations. In addition to this, we added two ways of modification. First, we asked the respondents to include the status-quo broadcasting services they subscribe to, as another alternative in each choice set. As a result, respondents choose the most preferred alternative among 5 alternatives consisting of 1 alternative with current subscription and 4 hypothetical alternatives in 4 choice sets. Modification of traditional conjoint survey in this way enabled us to estimate the factors related to switching cost or switching threshold in addition to the effects of attributes. Also, by using both revealed preference data(1 alternative with current subscription) and stated preference data (4 hypothetical alternatives), additional advantages in terms of the estimation properties and more conservative and realistic forecast, can be achieved. Second, we asked the respondents to choose the most preferred alternative while considering their expected adoption timing or switching timing. Respondents are asked to report their expected adoption or switching timing among 14 half-year points after the introduction of next generation broadcasting services. As a result, for each respondent, 14 observations with 5 alternatives for each period, are obtained, which results in panel-type data. Finally, this panel-type data consisting of $4{\ast}14{\ast}1000=56000$observations is used for estimation of the individual-level consumer adoption model. From the results obtained by empirical application, in case of forecasting the demand of new products without considering existence of previous product(s) and(or) switching cost factors, it is found that overestimated speed of diffusion at introductory stage or distorted predictions can be obtained, and as such, validities of our proposed model in which both existence of previous products and switching cost factors are properly considered, are verified. Also, it is found that proposed model can produce flexible patterns of market evolution depending on the degree of the effects of consumer preferences for the attributes of the alternatives on individual-level state transition, rather than following S-shaped curve assumed a priori. Empirically, it is found that in various scenarios with diverse combinations of prices, IPTV is more likely to take advantageous positions over Digital Cable TV in obtaining subscribers. Meanwhile, despite inferiorities in many technological attributes, Analog Cable TV, which is regarded as previous product in our analysis, is likely to be substituted by new services gradually rather than abruptly thanks to the advantage in low service charge and existence of high switching cost in fixed charged broadcasting service market.

    • PDF

    Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

    • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
      • Journal of Intelligence and Information Systems
      • /
      • v.18 no.3
      • /
      • pp.185-202
      • /
      • 2012
    • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.