• Title/Summary/Keyword: ISO26262

Search Result 73, Processing Time 0.02 seconds

A Study on the Risk Analysis and Fail-safe Verification of Autonomous Vehicles Using V2X Based on Intersection Scenarios (교차로 시나리오 기반 V2X를 활용한 자율주행차량의 위험성 분석 및 고장안전성 검증 연구)

  • Baek, Yunseok;Shin, Seong-Geun;Park, Jong-ki;Lee, Hyuck-Kee;Eom, Sung-wook;Cho, Seong-woo;Shin, Jae-kon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.299-312
    • /
    • 2021
  • Autonomous vehicles using V2X can drive safely information on areas outside the sensor coverage of autonomous vehicles conventional autonomous vehicles. As V2X technology has emerged as a key component of autonomous vehicles, research on V2X security is actively underway research on risk analysis due to failure of V2X communication is insufficient. In this paper, the service scenario and function of autonomous driving system V2X were derived by presenting the intersection scenario of the autonomous vehicle, the malfunction was defined by analyzing the hazard of V2X. he ISO26262 Part3 process was used to analyze the risk of malfunction of autonomous vehicle V2X. In addition, a fault injection scenario was presented to verify the fail-safe of the simulation-based intersection scenario.

On the Hazard Identification Methods for the Realization of Functional Safety Standards (기능안전 표준들의 구현을 위한 기능 중심의 위험원 식별 방법)

  • Jung, Ho Jeon;Lee, Jae Chon;Oh, Seong Keun
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.105-112
    • /
    • 2013
  • To meet the growing needs from a variety of stakeholders, the development of modern systems is getting more complex and thus, the systems failure in the actual operations can potentially become more serious. This is why several international or military standards on systems safety have been published. In spite of the importance of meeting those standards such as IEC 61508 and ISO 26262 in the systems development, the associated practical methods seem deficient since those standards do not provide them. The objective of this paper is to present a method to identify potential hazards in fulfilling the requirements of the safety standards. In particular, the approach taken here is based on applying the functional analysis that covers several levels of the system under development. Note, however, that in the most of the conventional methods for hazards identification, the analysis has been focused on the failure at or underneath the component level of the system. The hazards identification method in this paper would cover the level up to the system by utilizing the functions-oriented approach. The case study of the safety enhancement for locomotive cabs is also discussed.

High Speed Control of a Multi-pole Brake Motor Under a Long Current Control Period (다극 브레이크 모터의 긴 전류 제어주기 고속영역 제어)

  • Kim, Dokun;Park, Hongjoo;Park, Kyusung;Kim, Seonhyeong;Lee, Geunho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In hybrid or electric vehicles, the hydraulic brake system must be controlled cooperatively with the traction motor for regenerative braking. Recently, a motor driven brake system with a PMSM (Permanent Magnet Synchronous Motor) has replaced conventional vacuum boosters to increase regenerative power. Unlike industry motor controls, additional source codes such as functional safety are essential in automotive applications to meet ISO26262 standards. Therefore, the control logic execution time increases, which also causes an extension of the motor current control period. The increased current control period makes precise motor current control challenging inhigh speed ranges where the motor is driven by high frequency. In this paper, a PWM update strategy and a time delay compensation method are suggested to improve current control and system performance. The proposed methods are experimentally verified.

Basic Design of ECU Hardware for the Functional Safety of In-Vehicle Network Communication (차량 내 네트워크 통신의 기능안전성을 위한 하드웨어 기본 설계)

  • Koag, Hyun Chul;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1373-1378
    • /
    • 2017
  • This paper presents a basic ECU(Electronic Control Unit) hardware development procedure for the functional safety of in-vehicle network systems. We consider complete hardware redundancy as a safety mechanism for in-vehicle communication network under the assumption of the wired network failure such as disconnection of a CAN bus. An ESC (Electronic Stability Control) system is selected as an item and the required ASIL(Automotive Safety Integrity Level) for this item is assigned by performing the HARA(Hazard Analysis and Risk Assessment). The basic hardware architecture of the ESC system is designed with a microcontroller, passive components, and communication transceivers. The required ASIL for ESC system is shown to be satisfied with the designed safety mechanism by calculation of hardware architecture metrics such as the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric).

Maximum Stack Memory Usage Estimation Through Target Binary File Analysis in Microcontroller Environment (마이크로컨트롤러 환경에서 타깃 바이너리 파일 분석을 통한 최대 스택 메모리 사용량 예측 기법)

  • Choi, Kiho;Kim, Seongseop;Park, Daejin;Cho, Jeonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.3
    • /
    • pp.159-167
    • /
    • 2017
  • Software safety is a key issue in embedded system of automotive and aviation industries. Various software testing approaches have been proposed to achieve software safety like ISO26262 Part 6 in automotive environment. In spite of one of the classic and basic approaches, stack memory is hard to estimating exactly because of uncertainty of target code generated by compiler and complex nested interrupt. In this paper, we propose an approach of analyzing the maximum stack usage statically from target binary code rather than the source code that also allows nested interrupts for determining the exact stack memory size. In our approach, determining maximum stack usage is divided into three steps: data extraction from ELF file, construction of call graph, and consideration of nested interrupt configurations for determining required stack size from the ISR (Interrupt Service Routine). Experimental results of the estimation of the maximum stack usage shows proposed approach is helpful for optimizing stack memory size and checking the stability of the program in the embedded system that especially supports nested interrupts.

On a Hazard Identification Method Based on Functional Safety and SysML (SysML을 활용한 기능안전 기반의 위험원 분석 방법)

  • Jung, Ho Jeon;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.1
    • /
    • pp.79-88
    • /
    • 2014
  • The rapid growth of complexity and scale can be witnessed in the design and development of modern systems. As such, the severity of damages in the occasional accidents has attracted great deal of attention lately. Although a variety of methods have so far been studied to overcome or reduce the disastrous results of hazards, the issues seem still persistent and even complicated due to the situation mentioned above. The concept of functional safety has been regarded as one approach to handling the matters by shifting up to the functions level from the consideration of each physical component itself. The outcomes of those efforts would be the international standards on functional safety such as IEC 61508 and its relatives including IEC 62278, EN 50128, ISO26262, and so on. In this paper, a method of how hazards can be analyzed to be coped with those standards has been studied. In the method proposed, the systems modeling language (SysML) is playing a key role to model and analyze the hazards from the viewpoint of functional safety. The approach taken has been applied in the analysis of the hazards in railroad systems. In spite of focusing on the individual components hazards, the method based on functional safety has analyzed them collectively with the added effect of identifying the cause originated from the interface between the functions.

On the Use of Architectural Models Reflecting Functional Safety Standards in the Development of Rail Systems Safety Architecture (철도시스템 안전관리 체계개발에서 기능안전 표준을 반영한 아키텍처 모델의 활용)

  • Jeong, Ho-Jeon;Lee, Jae-Cheon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.615-623
    • /
    • 2013
  • 오늘날 기술의 발전으로 시스템들은 점차 대형화 복잡화 되어가고 있다. 이처럼 점차 대형화 복잡화 되어가고 있는 시스템들은 더욱 커진 사고 및 고장에 대한 위험을 내재하게 된다. 또한 대형 복합 시스템에서 발생하는 사고 및 고장은 바로 큰 재산피해나 인명피해와 직결 될 수 있다. 따라서 체계적인 안전관리의 필요성이 점차 커지고 있다. 이에 대응하여 철도, 항공, 해양 등의 산업에서는 각 산업에 적합한 안전관리체계를 수립하려 노력하고 있으며, 표준 및 매뉴얼을 제정하여 보급에 앞장서고 있다. 또한 시스템에서 전장품 및 소프트웨어가 차지하는 비중이 커지면서 기능안전이 안전분야의 이슈가 되고 있다. 이에 따라 IEC 61508, ISO 26262, IEC 61511 등 기능안전관련 표준들이 제정되어 기능안전을 달성하기 위한 기반을 제공하고 있다. 한편 국내 철도산업에서도 철도안전법의 재정을 기점을 철도 산업전반에 걸쳐 많은 환경변화가 이뤄지고 있고 이에 대응하기 위해 철도 안전시스템을 바탕으로 한 안전관리체계를 구축하였다. 한편 다양한 운영체계를 갖고 있는 철도시설 및 운영기관이 존재하는 국가 철도 안전관리체계의 안전규제를 체계화하기 위해서는 체계적인 요구사항의 분석에 따른 시스템 아키텍처의 설정이 요구되고 있다. 이러한 아키텍처의 설정은 현재에 대한 분석과 미래의 철도안전시스템의 특성을 구조화하여 향후 비전을 프레임워크로 표현함으로서 구현이 가능해진다. 본 논문에서는 현재의 안전관리체계의 도입 배경 및 도입 현황에 대해서 분석하고, 최근 기존의 안전관리체계와 더불어 최근에 안전분야에서 이슈가 되고 있는 기능안전 표준을 반영한 안전관리체계의 구축을 위해 안전관리체계에 대한 아키텍처를 구현하고자 하며 이때, 모델링을 바탕으로 한 접근을 제시한다.

  • PDF

Modeling and Analysis of IGLAD Traffic Accident Case using Prescan for SOTIF Standard Development (SOTIF 표준 개발을 위한 Prescan 기반 IGLAD 교통사고 케이스 모델링 및 분석)

  • Sangjoong Kim;Dongha Shim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.3
    • /
    • pp.53-58
    • /
    • 2023
  • Defects in the vehicle itself were considered the biggest risk factor for traffic accidents as the electrical and electronic components of vehicles, which were not there before, increase. Therefore, the vehicles have been developed based on ISO 26262 (an international functional safety standard) which is focusing on functional defect safety evaluation of electrical and electronic component systems. However, in the future, as autonomous driving technology is applied, even vehicles without functional defects must be prepared for the dangerous traffic situation that may arise from exceptional or external factors. SOTIF (Safety Of The Intended Functionality) is a concept to prevent exceptional or external factors. The main objective of SOTIF is to decrease Unknown & Unsafe factors as much as possible by finding Known factors and Unsafe factors. In this study, Prescan provided SIEMENS, one of the autonomous driving simulators, is used to make scenarios of IGLAD traffic accident cases. From the simulation results, Unsafe & Safe cases were classified and analyzed to derive unsafe factors.

A Proprietary Model of Continuously Variable Transmission System using Spline

  • Gu, Sien Dong
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.87-93
    • /
    • 2022
  • In each country, efforts are being made to replace engine-driven cars and motorcycles using fossil fuels with electric drive. Electrically driven vehicles have the advantage of no harmful gas or environmental pollution and low noise. In the motorcycle market, China accounts for more than 95% of the world, and the electric motorcycle market is being revitalized due to the strengthening of regulations. Japan is actively preparing to include electric motorcycles in ISO 26262, forming a TF team centered on electric motorcycle producers. Therefore, it is necessary to respond to standardization targeting China and Japan in Korea. In this study, we propose a proprietary transmission model that can be applied to small electric vehicles that can be operated in hilly domestic terrain. The proposed continuously variable transmission model is a continuously variable transmission system which moves the pin between the basic disk and the rotary disk using a spline to perform shifting. The proposed continuously variable transmission model is used in the pulley configuration by connecting the linear type spline and the inclined spline with the central axis of the basic disk and the rotational disk, respectively. In addition, it can be divided into two types according to the application of the auxiliary disk, and the production drawing is completed for the practical use of the model.

On the Reduction of Systematic Failure by Realizing a Method for Functional Safety (기능안전의 구현을 통한 Systematic Failure의 감축에 관한 연구)

  • Jung, Ho Jeon;Park, Chan Woo;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.161-169
    • /
    • 2013
  • Due to the recent advances in technology, the systems are becoming more demanding in terms of functionality and implementation complexity. Therefore, when system failures are involved in such complex systems, the effects of the related safety issues can also be more serious, thereby causing in the worst case irrecoverable hazards on both human being and properties. This fact can be witnessed in the recent rail systems accidents. In general, the accidents can be attributed to the systematic failure or the random failure. The latter is due to the aging or unsatisfied quality of the parts used in implementation or some unexpected external cause that would otherwise result in accidents whereas the former is usually related to incomplete systems design. As the systems are becoming more complex, so are the systematic failures. The objective of the paper is to study an approach to solving the systematic failure. To do so, at first the system design process is augmented by the functional safety activities that are suggested in the standard IEC 61508. Analyzing the artifacts of the integrated process yields the traceability, which satisfies the requirements for reduction of systematic failure as provided in ISO 26262. In order to reduce systematic failure, the results are utilized in the conceptual design stage of systems development in which systems requirements are generated and functional architecture is developed.