• Title/Summary/Keyword: ISO 14443

Search Result 16, Processing Time 0.024 seconds

Implementation of the contact and contactless IC Card OS for Java Card (자바 카드에서 접촉 및 비접촉 겸용 IC카드 OS의 설계 및 구현)

  • 주홍일;손수호;전용성;전성익
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.375-378
    • /
    • 2002
  • This paper describes tile design and implementation of contact and contactless If card OS(Operating System) for Java Card, namely JCOS(Java Card 05). The JCOS complies with ISO/IEC 7816 and IS0/1EC 14443 standards. The JCOS conforms to Java Card 2.1.2 specifications. The JCOS is running on 32-bit ARMTTDMI with public key crypto-coprocssor. This paper describes only the dual-interface protocol of the JCOS which supports contact and contactless applications in a single chip. The JCOS has been completed with our sample banking service and access control service in ETRI up to now.

  • PDF

A Design of Transceiver for 13.56MHz RFID Reader using the Peak Detector with Automatic Reference Voltage Generator (자동 기준전압 생성 피크 검출기를 이용한 13.56 MHz RFID 리더기용 송수신기 설계)

  • Kim, Ju-Seong;Min, Kyung-Jik;Nam, Chul;Hurh, Djyoung;Lee, Kang-Yun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.28-34
    • /
    • 2010
  • In this paper, the transceiver for RFID reader using 13.56MHz as a carrier frequency and meeting International Standard ISO 14443 type A, 14443 type B and 15693 is presented. The receiver is composed of envelope detector, VGA(Variable Gain Amplifier), filter, comparator to recovery the received signal. The proposed automatic reference voltage generator, positive peak detector, negative peak detector, and data slicer circuit can adjust the decision level of reference voltage over the received signal amplitudes. The transmitter is designed to drive high voltage and current to meet the 15693 specification. By using inductor loading circuit which can swing more than power supply and drive large current even under low impedance condition, it can control modulation rate from 30 percent to 5 percent, 100 perccnt and drive the output currents from 5 mA to 240 mA depending on standards. The 13.56 MHZ RFID reader is implemented in $0.18\;{\mu}m$ CM08 technology at 3.3V single supply. The chip area excluding pads is $1.5mm\;{\times}\;1.5mm$.

A Study on Cryptography Scheme and Secure Protocol for Safety Secure Scheme Construction in 13.56Mhz RFID (13.56Mhz RFID 환경에서 안전한 보안 스킴 구축을 위한 암호 스킴 및 보안 프로토콜 연구)

  • Kang, Jung-Ho;Kim, Hyung-Joo;Lee, Jae-Sik;Park, Jae-Pyo;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1393-1401
    • /
    • 2013
  • What is RFID Microchip tag attached to an object, the reader recognizes technology collectively, through communication with the server to authenticate the object. A variety of RFID tags, 13.56Mhz bandwidth RFID card, ISO/IEC 14443 standards based on NXP's Mifare tag occupies 72.5% of the world market. Of the Mifare tags, low cost tag Mifare Classic tag provided in accordance with the limited hardware-based security operations, protocol leaked by a variety of attacks and key recovery vulnerability exists. Therefore, in this paper, Cryptography Scheme and Secure Protocol for Safety Secure Scheme Construction in 13.56Mhz RFID have been designed. The proposed security scheme that KS generated by various fixed values and non-fixed value, S-Box operated, values crossed between LFSR and S-Box is fully satisfied spoofing, replay attacks, such as vulnerability of existing security and general RFID secure requirement. Also, It is designed by considering the limited hardware computational capabilities and existing security schemes, so it could be suit to Mifare Classic now.

The Learning System Design and the Implementation using RFID (RFID를 이용한 학습시스템 설계 및 구현)

  • Lee, Duck-Ju;Lim, Dong-Kyun;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.301-306
    • /
    • 2010
  • Thesis is about RFID(Radio Frequency Identification) technology which is recently in the spotlight of overall industry including physical distribution. Most RFID systems in Korea are imported, and there are also problems in manpower. In order to prevent these kinds of problems, students made to get and easy access to RFID system. The purpose of is to solve the regulation problems. We made an application software to practice RFID system implemented, which have several modules so that it can be easy for users to understand RFID system. We also invented a system which makes student ID to help users understand how RFID system is implemented in real life.

A 13.56 MHz Radio Frequency Identification Transponder Analog Front End Using a Dynamically Enabled Digital Phase Locked Loop

  • Choi, Moon-Ho;Yang, Byung-Do;Kim, Nam-Soo;Kim, Yeong-Seuk;Lee, Soo-Joo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.20-23
    • /
    • 2010
  • The analog front end (AFE) of a radio frequency identification transponder using the ISO 14443 type A standard with a 100% amplitude shift keying (ASK) modulation is proposed in this paper and verified by circuit simulations and measurements. This AFE circuit, using a 13.56 MHz carrier frequency, consists of a rectifier, a modulator, a demodulator, a regulator, a power on reset, and a dynamically enabled digital phase locked loop (DPLL). The DPLL, with a charge pump enable circuit, was used to recover the clock of a 100% modulated ASK signal during the pause period. A high voltage lateral double diffused metal-oxide semiconductor transistor was used to protect the rectifier and the clock recovery circuit from high voltages. The proposed AFE was fabricated using the $0.18\;{\mu}m$ standard CMOS process, with an AFE core size of $350\;{\mu}m\;{\times}\;230\;{\mu}m$. The measurement results show that the DPLL, using a demodulator output signal, generates a constant 1.695 MHz clock during the pause period of the 100% ASK signal.

Design of Clock Recovery circuit for 13.56MHz RFID Tags with 100% ASK Receiver (100% ASK 수신기를 위한 13.56MHz RFID Tag용 클럭 복원회로 설계)

  • Kim, Ji-Gon;Yi, Kyeong-Il;Kim, Hyun-Sik;Kim, J.H.;Kim, Hyo-Jong;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.44-49
    • /
    • 2008
  • We have proposed a clock recovery circuit for 13.56MHz RFID Tags using 100%, ASK RF input signal. The proposed clock recovery circuit generates clock pulses without reference clock by adapting register controlled DLL. The proposed circuit have designed by using a TSMC 0.18um 1P6M CMOS technology. The simulated results show that the phase locking time of the proposed circuit is about 6.4 usec and power consumption is about 43uW at supply voltage of 3.3V.