• Title/Summary/Keyword: ISM:clouds

Search Result 71, Processing Time 0.026 seconds

THE UNUSUAL STELLAR MASS FUNCTION OF STARBURST CLUSTERS

  • Dib, Sami
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.157-160
    • /
    • 2007
  • I present a model to explain the mass segregation and shallow mass functions observed in the central parts of starburst stellar clusters. The model assumes that the initial pre-stellar cores mass function resulting from the turbulent fragmentation of the proto-cluster cloud is significantly altered by the cores coalescence before they collapse to form stars. With appropriate, yet realistic parameters, this model based on the competition between cores coalescence and collapse reproduces the mass spectra of the well studied Arches cluster. Namely, the slopes at the intermediate and high mass ends, as well as the peculiar bump observed at $6M_{\bigodot}$. This coalescence-collapse process occurs on a short timescale of the order of the free fall time of the proto-cluster cloud (i.e., a few $10^4$ years), suggesting that mass segregation in Arches and similar clusters is primordial. The best fitting model implies the total mass of the Arches cluster is $1.45{\times}10^5M_{\bigodot}$, which is slightly higher than the often quoted, but completeness affected, observational value of a few $10^4M_{\bigodot}$. The model implies a star formation efficiency of ${\sim}30$ percent which implies that the Arches cluster is likely to a gravitationally bound system.

ON THE HOMOGENEITY OF THE EXTINCTION LAW IN OUR GALAXY

  • Bondar, A.;Galazutdinov, G.;Patriarchi, P.;Krelowski, J.
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.3
    • /
    • pp.73-80
    • /
    • 2006
  • We analyze the extinction law towards several B1V stars-members of our Galaxy, searching for possible discrepancies from the galactic average extinction curve. Our photometric data allow to build extinction curves in a very broad range: from extreme UV till infrared. Two-colour diagrams, based on the collected photometric data from the ANS UV satellite, published UBV measurements and on the infrared 2MASS data of the selected stars, are constructed. Slopes of the fitted straight lines are used to build the average extinction curve and to search for discrepant objects. The selected stars have also been observed spectroscopically from the Terskol and ESO Observatories; these spectra allow to check their Sp/L's. The spectra of only about 30% of the initially selected objects resemble closely that of HD144470, considered as the standard of B1 V type. Other spectra either show some emission features or belong clearly to another spectral types. They are not used to build the extinction curve. Two-colour diagrams, constructed for the selected B1 V stars, showing no emission stellar features, prove that the interstellar extinction law is homogeneous in the Galaxy. Both the shape of the curve and the total-to-selective extinction ratio do not differ from the galactic average and the canonical value(3.1) respectively. The circumstellar emissions usually cause some discrepancies from the average interstellar extinction law; the discrepancies observed in the extraterrestrial ultraviolet, usually follow some misclassifications.

NEAR- TO MID-INFRARED SLIT SPECTROSCOPIC OBSERVATIONS OF THE UNIDENTIFIED INFRARED BANDS IN THE LARGE MAGELLANIC CLOUD

  • Mori, T.I.;Sakon, I.;Onaka, T.;Umehata, H.;Kaneda, H.;Ohsawa, R.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.209-212
    • /
    • 2012
  • We present the results of the near-infrared (NIR) to mid-infrared (MIR) slit spectroscopic observations of the diffuse emission toward nine positions in the nearby irregular galaxy Large Magellanic Cloud (LMC) with the Infrared Camera (IRC) on board AKARI. The unique characteristic of AKARI/IRC provides a great opportunity to analyze variations in the unidentified infrared (UIR) bands based on continuous spectra from 2.5 to $13.4{\mu}m$ of the same slit area. The observed variation of $I_{3.3}/I_{11.3}$ suggests destruction of small-sized UIR band carriers, polycyclic aromatic hydrocarbons (PAHs) in harsh environments. This result demonstrates that the UIR $3.3{\mu}m$ band provides us powerful information on the excitation conditions and/or the size distribution of PAHs, which is of importance for understanding the evolutionary process of hydrocarbon grains in the Universe. It also suggests a new diagnostic diagram of two band ratios, such as $I_{3.3}/I_{11.3}$ versus $I_{7.7}/I_{11.3}$, for the interstellar radiation conditions. We discuss on the applicability of the diagnostic diagram to other astronomical objects, comparing the LMC results with those observed in other galaxies such as NGC 6946, NGC 1313, and M51.

THERMAL AND NON-THERMAL RADIO CONTINUUM SOURCES IN THE W51 COMPLEX

  • MOON DAE-SIK;KOO BON-CHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.81-102
    • /
    • 1994
  • We have decomposed the 11-cm radio continuum emission of the W51 complex into thermal and non-thermal components. The distribution of the thermal emission has been determined by analyzing HI, CO, and IRAS $60-{\mu}m$ data. We have found a good correlation between the 11-cm thermal continuum and the 60- 11m emissions, which is used to obtain the thermal and non-thermal 11-cm continuum maps of the W51 complex. Most of the thermal continuum is emanating from the compact H II regions and their low-density ionized envelopes in W51A and W51B. All the H II regions, except G49.1-0.4 in W51B, have associated molecular clumps. The thermal radio continuum fluxes of the compact H II regions are proportional to the CO fluxes of molecular clumps. This is consistent with the previous results that the total mass of stars in an H II region is proportional to the mass of the associated molecular clump. According to our result, there are three non-thermal continuum sources in W51: G49.4-0.4 in W51A, a weak source close to G49.2-0.3 in W51B, and the shell source W51C. The non-thermal flux of G49.5-0.4 at 11-cm is $\~28 Jy$, which is $\~25\%$ of its total 11-cm flux. The radio continuum spectrum between 0.15 and 300 GHz also suggests an excess emission over thermal free-free emission. We show that the excess emission can be described as a non-thermal emission with a spectral index ${\alpha}{\simeq}-1.0 (S_v{\propto}V^a)$ attenuated by thermal free-free absorptions at low-frequencies. The non-thermal source close to G49.2-0.3 is weak $(\~9 Jy)$. The nature of the source is not known and the reality of the non-thermal emission needs to be confirmed. The non~thermal shell source W51C has a 11-cm flux of $\~130Jy$ and a spectral index ${\alpha}{\simeq}-0.26$.

  • PDF

DEUTERATED METHANOL (CH3OD) IN THE HOT CORE OF THE MASSIVE STAR-FORMING REGION DR21 (OH) (무거운 별 탄생 지역인 DR21(OH) 천체에 대한 중수소화된 메탄올(CH3OD) 관측연구)

  • Minh, Young Chol
    • Publications of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.29-34
    • /
    • 2014
  • We have observed the deuterated methanol, $CH_3OD$, toward the hot core MM1 in the massive star-forming region DR21 (OH) using the Submillimeter Array with a high angular resolution of about 1 arcsecond. The position of the hot core associated with the sub-core MM1a was confirmed to coincide with the continuum peak where an embedded young stellar object is located. The column density of $CH_3OD$ was found to be about $(2{\pm}1){\times}10^{16}cm^{-2}$ toward the MM1a center. The abundance ratio $CH_3OD/CH_3OH$ was measured to be ~ 0.45, which is about the median value for low mass star-forming cores but much larger than those of the massive star-forming cores. The ratio is believed to change depending on, for example, the chemical condition, the temperature and the density of the source. This ratio may further depend on the evolutionary phase especially in the massive-star-forming cores. The sub-core MM1a is thought to be in the very early phase of star formation. This large abundance ratio found in this source indicates that even the massive star-forming cores, during a relatively short period in the very early stage of star formation, may also show a chemical state resulted from the cold and dense pre-collapsing phase, the enhanced deuteration as found in low mass star-forming cores.

DIFFUSE [CII] 158 MICRON LINE EMISSION FROM THE INTERSTELLAR MATTER AT HIGH GALACTIC LATITUDE

  • MATSUHARA H.;TANAKA M.;KAWADA M.;MAKIUTI S.;MATSUMOTO T.;NAKAGAWA T.;OKUDA H.;SHIBAI H.;HIROMOTO N.;OKUMURA K.;LANGE A. E.;BOCK J. J.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.171-172
    • /
    • 1996
  • We present the results of an rocket-borne observation of far-infrared [CII] line at 157.7 ${\mu}m$ from the diffuse inter-stellar medium in the Ursa Major. We also introduce a part of results on the [CII] emission recently obtained by the IRTS, a liquid-helium cooled 15cm telescope onboard the Space Flyer Unit. From the rocket-borne observation we obtained the cooling rate of the diffuse HI gas due to the [CII] line emission, which is $1.3{\pm}0.2 {\times} 10^{-26}$ $ergss^{-1} H^{-1}_{atom}$. We also observed appreciable [CII] emission from the molecular clouds, with average CII/CO intensity ratio of 420. The IRTS observation provided the [CII] line emission distribution over large area of the sky along great circles crossing the Galactic plane at I = $50^{\circ}$ and I = $230^{\circ}$. We found two components in their intensity distributions, one concentrates on the Galactic plane and the another extends over at least $20^{\circ}$ in Galactic latitude. We ascribe one component to the emission from the Galactic disk, and the another one to the emission from the local interstellar gas. The [CII] cooling rate of the latter component is $5.6 {\pm} 2.2 {\times}10$.

  • PDF

FUNS - Filaments, the Universal Nursery of Stars. I. Physical Properties of Filaments and Dense Cores in L1478

  • Chung, Eun Jung;Kim, Shinyoung;Soam, Archana;Lee, Chang Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2018
  • Formation of filaments and subsequent dense cores in ISM is one of the essential questions to address in star formation. To investigate this scenario in detail, we recently started a molecular line survey namely 'Filaments, the Universal Nursery of Stars (FUNS)' toward nearby filamentary clouds in Gould Belt using TRAO 14m single dish telescope equipped with a 16 multi-beam array. In the present work, we report the first look results of kinematics of a low mass star forming region L1478 of California molecular cloud. This region is found to be consisting of long filaments with a hub-filament structure. We performed On-The-Fly mapping observations covering ~1.1 square degree area of this region using C18O(1-0) as a low density tracer and 0.13 square degree area using N2H+(1-0) as a high density tracer, respectively. CS (2-1) and SO (32-21) were also used simultaneously to map ~290 square arcminute area of this region. We identified 10 filaments applying Dendrogram technique to C18O data-cube and 13 dense cores using FellWalker and N2H+ data set. Basic physical properties of filaments such as mass, length, width, velocity field, and velocity dispersion are derived. It is found that filaments in L~1478 are velocity coherent and supercritical. Especially the filaments which are highly supercritical are found to have dense cores detected in N2H+. Non-thermal velocity dispersions derived from C18O and N2H+ suggest that most of the dense cores are subsonic or transonic while the surrounding filaments are transonic or supersonic. We concluded that filaments in L~1478 are gravitationally unstable which might collapse to form dense cores and stars. We also suggest that formation mechanism can be different in individual filament depending on its morphology and environment.

  • PDF

Far-ultraviolet study of the GSH006-15+7: A local Galactic supershell

  • Jo, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2014
  • GSH 006-15+7 is a Milky Way supershell discovered by Moss et al. (2012). This supershell shows large shell-like structures in H I velocity maps. We have analyzed FUV emission for the supershell regions based on the FIMS and GALEX observations. Bright FUV flux at the boundaries of the supershell is mostly originated from dust scattering of FUV photons by dust clouds which was also observed at the boundaries of the supershell. We could find the distance to the supershell can be closer more than 30% compared with the distance of 1500 pc suggested by Moss et al. (2012) from the dust scattering simulation. And we also found the albedo and the phase function asymmetry factor of interstellar grains were 0.30 and 0.40, respectively. The confidence range for the albedo covers the theoretical value of 0.40, but g-factor is rather smaller than the theoretical value of 0.65. The small g-factor might mean the environment of turbulent ISM of the supershell. Meanwhile, the excess of C IV and X-ray emissions in the inside of the supershell can support the existence of hot gas and cooling in the supershell. And the C IV and X-ray emissions are monotonically decrease as away from the center of the SNR. This indicates the size of the hot bubble has considerably shrunk. We applied a simple simulation model to the PDR candidate region of the lower part of the supershell and obtained a H2 column density N(H2) = 1017.0-18.0 cm-2 and total hydrogen density nH ${\geq}$ 10 cm-3. This result shows the PDR candidate region represents a transition region from the warm phase to the cool phase in the PDR.

  • PDF

THE PROCESSING OF CLUMPY MOLECULAR GAS AND STAR FORMATION IN THE GALACTIC CENTER

  • LIU, HAUYU BAOBAB;MINH, YOUNG CHOL;MILLS, ELISABETH
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.133-137
    • /
    • 2015
  • The Galactic center uniquely provides opportunities to resolve how star clusters form in neutral gas overdensities engulfed in a large-scale accretion flow. We have performed sensitive Green Bank 100m Telescope (GBT), Karl G. Jansky Very Large Array (JVLA), and Submillimeter Array (SMA) mapping observations of molecular gas and thermal dust emission surrounding the Galaxy's supermassive black hole (SMBH) Sgr $A^{\ast}$. We resolved several molecular gas streams orbiting the center on ${\gtrsim}10$ pc scales. Some of these gas streams appear connected to the well-known 2-4 pc scale molecular circumnuclear disk (CND). The CND may be the tidally trapped inner part of the large-scale accretion flow, which incorporates inflow via exterior gas filaments/arms, and ultimately feeds gas toward Sgr $A^{\ast}$. Our high resolution GBT+JVLA $NH_3$ images and SMA+JCMT 0.86 mm dust continuum image consistently reveal abundant dense molecular clumps in this region. These gas clumps are characterized by ${\gtrsim}100$ times higher virial masses than the derived molecular gas masses based on 0.86 mm dust continuum emission. In addition, Class I $CH_3OH$ masers and some $H_2O$ masers are observed to be well associated with the dense clumps. We propose that the resolved gas clumps may be pressurized gas reservoirs for feeding the formation of 1-10 solar-mass stars. These sources may be the most promising candidates for ALMA to probe the process of high-mass star-formation in the Galactic center.

A STUDY OF DWARF GALAXIES EMBEDDED IN A LARGE-SCALE Hɪ RING IN THE LEO I GROUP

  • KIM, MYO JIN;CHUNG, AEREE;LEE, JONG CHUL;LIM, SUNGSOON;KIM, MINJIN;KO, JONGWAN;LEE, JOON HYEOP;YANG, SOUNG-CHUL;LEE, HYE-RAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.517-519
    • /
    • 2015
  • A large-scale neutral hydrogen ($H\small{I}$) ring serendipitously found in the Leo I galaxy group is 200 kpc in diameter with $M_{H\small{I}}{\sim}1.67{\times}10^9M_{\odot}$, unique in size in the Local Universe. It is still under debate where this $H\small{I}$ ring originated - whether it has formed out of the gas remaining after the formation of a galaxy group (primordial origin) or been stripped during galaxy-galaxy interactions (tidal origin). We are investigating the optical and $H\small{I}$ gas properties of the dwarf galaxies located within the gas ring in order to probe its formation mechanism. In this work, we present the photometric properties of the dwarfs inside the ring using the CFHT MegaCam $u^{\ast}$, $g^{\prime}$, $r^{\prime}$ and $i^{\prime}$-band data. We discuss the origin of the gas ring based on the stellar age and metal abundance of dwarf galaxies contained within it.