• Title/Summary/Keyword: ISM:abundances

Search Result 19, Processing Time 0.024 seconds

A SPECTRAL LINE SURVEY OF THE ULTRACOMPACT H II REGION G34.3+0.15. II: 155.3-165.3 GHZ

  • KIM HUN-DAE;CHO SE-HYUNG;LEE CHANG-WON;BURTON MICHAEL G.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.3
    • /
    • pp.167-179
    • /
    • 2001
  • A molecular line survey towards the UC H II region G34.3+0.15 from 155.3 to 165.3GHz has been conducted with the TRAO 14-m radio telescope. Combined with our previous observations from 84.7 to 115.6GHz and 123.5 to 155.3GHz (Paper I), the spectral coverage of this survey in G34.3+0.15 now runs from 85 to 165 GHz. From these latest observations, a total of 18 lines from 6 species were detected. These include four new lines corresponding to ${\Delta}$J = 0, ${\Delta}$K = 1 transitions of the $CH_3OH$ E-type species, and two new lines corresponding to transitions from $SO_2$ and $HC_3N$. These 6 new lines are $CH_3OH$[1(1) - 1(0)E], $CH_3OH$[2(1) - 2(0)E], $CH_3OH$[3(1) - 3(0)E], $CH_3OH$[4(1) - 4(0)E], $SO_2$[14(1, 13) -14(0, 14)] and $HC_3N$[18 -17]. We applied a rotation diagram analysis to derive rotation temperatures and column densities from the methanol transitions detected, and combined with NRAO 12-m data from Slysh et al. 1999. Applying a two-component fit, we find a cold component with temperature 13-16K and column density $3.3-3.4 {\times} 10^{14} cm^{-2}$, and a hot component with temperature 64 - 83K and column density $9.3{\times}10^{14} - 9.7 {\times} 10^{14} cm^{-2}$. On the other hand, applying just a one-component fit yields temperatures in the 47 -62 K range and column densities from $7.5-1.1 {\times} 10^{15} cm^{-2}$.

  • PDF

MOLECULAR CLOUD ASSOCIATED WITH AFGL 2591

  • Minh, Y.C.;Yang, Ji
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.5
    • /
    • pp.139-145
    • /
    • 2008
  • The molecular cloud, embedding AFGL 2591, has a "head-and-tail" structure with a total mass of ${\sim}\;1800\;M_{\odot}$, about half of the mass (${\sim}\;900\;M_{\odot}$) in the head (size ${\sim}\;1.2\;pc$ in diameter), and another half in the envelope (${\sim}\;3.5\;pc$ in the east-west direction). We found a new cloud in the direction toward north-east from AFGL 2591 (projected distance ${\sim}\;2.4\;pc$), which is probably associated with the AFGL 2591 cloud. The $^{12}CO$ spectrum clearly shows a blue-shifted high-velocity wing at around the velocity $-20\;{\sim}\;-10\;km\;s^{-1}$, but it is not clear whether this high-velocity component has a bipolar nature in our observations. The observed CN spectra also show blue-shifted wing component but the existence of the red-shifted component is not clear, either. In some CN and HCN spectra, the highvelocity components appear as a different velocity component, not a broad line-wing component. The dense cores, traced by CN and HCN, exist in the 'head' of the AFGL 2591 cloud with an elongated morphology roughly in the north-south direction with a size of about 0.5 pc. The abundance ratio between CN and HCN is found to be about 2 - 3 within the observed region, which may suggest a possibility that this core is being affected by the embedded YSOs or by possible shocks from outside.

SMA OBSERVATIONS OF THE HOT CORES OF DR21(OH)

  • Minh, Young Chol;Chen, Huei-Ru;Su, Yu-Nung;Liu, Sheng-Yuan
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.6
    • /
    • pp.157-166
    • /
    • 2012
  • Using the Submillimeter Array (SMA), we identified two bright hot subcores, MM1a and MM1b (size ~ 1" and mass ~ 0.5 $M_{\odot}$) separated by about 1.600, in the 230 GHz continuum emission toward the massive star-forming region DR21(OH). Both display typical hot core characteristics but have slightly different chemical properties. For example, highly saturated species show stronger emission toward MM1a and seem to be evaporating directly from the grain mantles. In contrast, simple sulfur-bearing species have brighter emission at MM1b. These features indicate that MM1a is at an earlier stage than MM1b, and the small-scale chemical differences between these two cores may result from the age difference of the order of $10^4$ years.

PHYSICAL AND CHEMICAL PROPERTIES OF PLANETARY NEBULAE WITH WR-TYPE NUCLEI

  • DANEHKAR, ASHKBIZ;WESSON, ROGER;KARAKAS, AMANDA I.;PARKER, QUENTIN A.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.159-161
    • /
    • 2015
  • We have carried out optical spectroscopic measurements of emission lines for a sample of Galactic planetary nebulae with Wolf-Rayet (WR) stars and weak emission-line stars (wels). The plasma diagnostics and elemental abundance analysis have been done using both collisionally excited lines (CELs) and optical recombination lines (ORLs). It was found that the abundance discrepancy factors ($ADF{\equiv}ORL/CEL$) are closely correlated with the difference between temperatures derived from forbidden lines and those from $He\;{\small{I}}$ recombination lines, implying the existence of H-deficient materials embedded in the nebula. The $H{\beta}$ surface brightness correlations suggest that they might be also related to the nebular evolution.

LY$\alpha$ TRANSFER IN A THICK, DUSTY, AND STATIC MEDIUM

  • AHN SANG-HYEON;LEE HEE-WON;LEE HYUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • We developed a Monte Carlo code that describes the resonant Ly$\alpha$ line transfer in an optically thick, dusty, and static medium. The code was tested against the analytic solution derived by Neufeld (1990). We explain the line transfer mechanism by tracing histories of photons in the medium. We find that photons experiences a series of wing scatterings at the moment of thier escape from the medium, during which polarization may develop. We examined the amount of dust extinction for a wide range of dust abundances, which are compared with the analytic solution. Brief discussions on the astrophysical application of our work are presented.

  • PDF

SH 2-128, AN H II AND STAR FORMING REGION IN AN UNLIKELY PLACE

  • BOHIGAS JOAQUIN;TAPIA MAURICIO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.285-288
    • /
    • 2004
  • Near-infrared imaging photometry supplemented by optical spectroscopy and narrow-band imaging of the H II region Sh 2-128 and its environment are presented. This region contains a developed H II region and the neighboring compact H II region S 128N associated with a pair of water maser sources. Midway between these, the core of a CO cloud is located. The principal ionizing source of Sh 2-128 is an 07 star close to its center. A new spectroscopic distance of 9.4 kpc is derived, very similar to the kinematic distance to the nebula. This implies a galactocentric distance of 13.5 kpc and z = 550 pc. The region is optically thin with abundances close to those predicted by galactocentric gradients. The $JHK_s$ images show that S 128N contains several infrared point sources and nebular emission knots with large near-infrared excesses. One of the three red Ks knots coincides with the compact H II region. A few of the infrared-excess objects are close to known mid- and far-infrared emission peaks. Star counts in J and $K_s$ show the presence of a small cluster of B-type stars, mainly associated with S 128N. The $JHK_s$ photometric properties together with the characteristics of the other objects in the vicinity suggest that Sh 2-128 and S 128N constitute a single complex formed from the same molecular cloud, with ages ${\~}10^6$ and < $3 {\times} 10^5$ years respectively. No molecular hydrogen emission was detected at 2.12 ${\mu}m$. The origin of this remote star forming region is an open problem.

PHOTOIONIZATION MODELS OF THE WARM IONIZED MEDIUM IN THE GALAXY (우리은하 중온 이온화 매질의 광이온화 모델)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.89-95
    • /
    • 2007
  • The warm ionized medium (WIM) outside classical H II regions is a fundamental gas-phase constituent of the Milky Way and other late-type spiral galaxies, and is traced by faint emission lines at optical wavelengths. We calculate the photoionization models of the WIM in the Galaxy by a stellar UV radiation with the effective temperature 35,000 K assuming not only spherical geometry but also plane parallel geometry, and compare the results with the observed emission line ratios. We also show the dependence of the emission line ratios on various gas-phase abundances. The emergent emission-line ratios are in agreement with the average-values of observed ratios of [S II] ${\lambda}6716/H{\alpha}$, [N II] ${\lambda}6583/H{\alpha}$, [O I] ${\lambda}6300/H{\alpha}$, [O III] ${\lambda}5007/H{\alpha}$, He I ${\lambda}5876/H{\alpha}$. However, their extreme values could not be explained with the photoionization models. It is also shown that the addition of all stellar radiation from the OB stars in the Hipparcos stellar catalog resembles that of an O7-O8 type star.

EXPANSION VELOCITY INVESTIGATION OF THE ELLIPTICAL PLANETARY NEBULA NGC 6803

  • Choi, Youn-Su;Lee, Seong-Jae;Hyung, Siek
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.6
    • /
    • pp.163-172
    • /
    • 2008
  • Using the spectral data in the 3700 to $10050{\AA}$ wavelength range secured with the Hamilton Echelle Spectrograph (HES) at the Lick observatory, we have investigated the expansion velocities and the physical conditions of the elliptical planetary nebula NGC 6803. Various forbidden and permitted lines, e.g. HI, HeI, HeII, [OIII], [NII], [ArIII], and [SII], indicate complicated but systematic physical conditions variation: electron temperatures $T_{\varepsilon}\;{\sim}\;9000$ - 11000 K and electron number densities $N_{\varepsilon}\;{\sim}\;2000$ - $9000\;cm^{-3}$. The line profile analysis of these ions also indicates the systematic change or the acceleration of the expansion velocities in the range of 10 - $22\;km\;s^{-1}$. We show that the velocity gradient and physical condition found in various ions are closely related to the prolate ellipsoidal structure of NGC 6803. The expansion velocity and the ionic abundance of $O^{2+}$ were derived based on the OII and [OIII] lines. In spite of the discrepancy of ionic abundances derived by the two cases and their line profiles, the expansion velocities of them agree well. We find that the ratios of the red to blue line component of the HeII & OII lines are different from those of the [OIII] or other forbidden lines that indicates a possible involvement of emission of HeII & OII lines. This subtle difference and the different physical condition of the lines are likely to be caused by the elongated geometry and the latitude dependence of the emission zone.

Optical spectroscopy of LMC SNRs to reveal the origin of [P II] knots

  • Aliste C., Rommy L.S.E.;Koo, Bon-Chul;Seok, Ji Yeon;Lee, Yong-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.65.2-66
    • /
    • 2021
  • Observational studies of supernova (SN) feedback are limited. In our galaxy, most supernova remnants (SNRs) are located in the Galactic plane, so there is contamination from foreground/background sources. SNRs located in other galaxies are too far, so we cannot study them in detail. The Large Magellanic Cloud (LMC) is a unique place to study the SN feedback due to their proximity, which makes possible to study the structure of individual SNRs in some detail together with their environment. Recently, we carried out a systematic study of 13 LMC SNRs using [P II] (1.189 ㎛) and [Fe II] (1.257 ㎛) narrowband imaging with SIRIUS/IRSF, four SNRs (SN 1987A, N158A, N157B and N206), show [P II]/[Fe II] ratio much higher than the cosmic abundance. While the high ratio of SN 1987A could be due to enhanced abundance in SN ejecta, we do not have a clear explanation for the other cases. We investigate the [P II] knots found in SNRs N206, N157B and N158A, using optical spectra obtained last November with GMOS-S mounted on Gemini-South telescope. We detected several emission lines (e.g., H I, [O I], He I, [O III], [N II] and [S II]) that are present in all three SNRs, among other lines that are only found in some of them (e.g., [Ne III], [Fe III] and [Fe II]). Various line ratios are measured from the three SNRs, which indicate that the ratios of N157B tend to differ from those of other two SNRs. We will use the abundances of He and N (from the detection of [N II] and He I emission lines), together with velocity measurements to tell whether the origin of the [P II] knots are SN ejecta or CSM/ISM. For this purpose we have built a family of radiative shock with self-consistent pre-ionization using MAPPINGS 5.1.18, with shock velocities in the range of 100 to 475 km/s. We will compare the observed and modeled line fluxes for different depletion factors.

  • PDF