Browse > Article
http://dx.doi.org/10.5303/PKAS.2015.30.2.159

PHYSICAL AND CHEMICAL PROPERTIES OF PLANETARY NEBULAE WITH WR-TYPE NUCLEI  

DANEHKAR, ASHKBIZ (Department of Physics and Astronomy, Macquarie University)
WESSON, ROGER (European Southern Observatory)
KARAKAS, AMANDA I. (Research School of Astronomy & Astrophysics, Australian National University)
PARKER, QUENTIN A. (Department of Physics and Astronomy, Macquarie University)
Publication Information
Publications of The Korean Astronomical Society / v.30, no.2, 2015 , pp. 159-161 More about this Journal
Abstract
We have carried out optical spectroscopic measurements of emission lines for a sample of Galactic planetary nebulae with Wolf-Rayet (WR) stars and weak emission-line stars (wels). The plasma diagnostics and elemental abundance analysis have been done using both collisionally excited lines (CELs) and optical recombination lines (ORLs). It was found that the abundance discrepancy factors ($ADF{\equiv}ORL/CEL$) are closely correlated with the difference between temperatures derived from forbidden lines and those from $He\;{\small{I}}$ recombination lines, implying the existence of H-deficient materials embedded in the nebula. The $H{\beta}$ surface brightness correlations suggest that they might be also related to the nebular evolution.
Keywords
ISM: abundances; planetary nebulae: general; stars: Wolf-Rayet;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Danehkar, A., 2014, PhD thesis, Macquarie University
2 Danehkar, A., Parker, Q. A., & Ercolano, B., 2013, Observations and Three-dimensional Ionization Structure of the Planetary Nebula SuWt 2, MNRAS, 434, 1513   DOI
3 Danehkar, A., Todt, H., Ercolano, B. & Kniazev, A. Y., 2014, Observations and Three-dimensional Photoionization Modelling of the Wolf-Rayet Planetary Nebula Abell 48, MNRAS, 439, 3605   DOI
4 Dopita, M. A. & Meatheringham, S. J. 1990, The Evolutionary Sequence of Planetary Nebulae, ApJ, 357, 140   DOI
5 Dopita, M. et al., 2010, The Wide Field Spectrograph (WiFeS): performance and data reduction, ap&ss, 327, 245   DOI
6 Karakas, A. I., van Raai, M. A., Lugaro, M., Sterling N. C., & Dinerstein. H. L. 2009, ApJ, 690, 1130   DOI
7 Kingsburgh, R. L. & Barlow, M. J., 1994, Nucleosynthesis Predictions for Intermediate-Mass Asymptotic Giant Branch Stars: Comparison to Observations of Type I Planetary Nebulae, MNRAS, 271, 257   DOI
8 Liu, Y., Liu, X. -W., Barlow, M. J., & Luo, S. -G., 2004, Chemical Abundances of Planetary Nebulae from Optical Recombination Lines - II. Abundances Derived from Collisionally Excited Lines and Optical Recombination Lines, MNRAS, 353, 1251   DOI   ScienceOn
9 O'Dell, C. R., 1962, A Distance Scale for Planetary Nebulae Based on Emission-Line Fluxes, ApJ, 135, 371   DOI
10 Peimbert, M., 1967, Temperature Determinations of H II Regions, ApJ, 150, 825   DOI
11 Tsamis, Y. G., Barlow, M. J., Liu, X. -W., Storey, P. J., & Danziger, I. J., 2004, A deep survey of heavy element lines in planetary nebulae - II. Recombination-line abundances and evidence for cold plasma, MNRAS, 353, 953   DOI   ScienceOn
12 Wesson, R. & Liu, X. -W., 2004, Physical conditions in the planetary nebula NGC 6543, MNRAS, 351, 1026   DOI   ScienceOn
13 Wesson, R., Liu, X. -W., & Barlow, M. J., 2005, The abundance discrepancy - recombination line versus forbidden line abundances for a northern sample of galactic planetary nebulae, MNRAS, 362, 424   DOI   ScienceOn