DOI QR코드

DOI QR Code

MOLECULAR CLOUD ASSOCIATED WITH AFGL 2591

  • Minh, Y.C. (Korea Astronomy and Space Science Institute) ;
  • Yang, Ji (Purple Mountain Observatory, Chinese Academy of Sciences)
  • Published : 2008.10.31

Abstract

The molecular cloud, embedding AFGL 2591, has a "head-and-tail" structure with a total mass of ${\sim}\;1800\;M_{\odot}$, about half of the mass (${\sim}\;900\;M_{\odot}$) in the head (size ${\sim}\;1.2\;pc$ in diameter), and another half in the envelope (${\sim}\;3.5\;pc$ in the east-west direction). We found a new cloud in the direction toward north-east from AFGL 2591 (projected distance ${\sim}\;2.4\;pc$), which is probably associated with the AFGL 2591 cloud. The $^{12}CO$ spectrum clearly shows a blue-shifted high-velocity wing at around the velocity $-20\;{\sim}\;-10\;km\;s^{-1}$, but it is not clear whether this high-velocity component has a bipolar nature in our observations. The observed CN spectra also show blue-shifted wing component but the existence of the red-shifted component is not clear, either. In some CN and HCN spectra, the highvelocity components appear as a different velocity component, not a broad line-wing component. The dense cores, traced by CN and HCN, exist in the 'head' of the AFGL 2591 cloud with an elongated morphology roughly in the north-south direction with a size of about 0.5 pc. The abundance ratio between CN and HCN is found to be about 2 - 3 within the observed region, which may suggest a possibility that this core is being affected by the embedded YSOs or by possible shocks from outside.

Keywords

References

  1. Bally, J. & Lada, C. J., 1983, The high-velocity molecular flows near young stellar objects, ApJ, 265, 824 https://doi.org/10.1086/160729
  2. Burns, M. S., Hayward, T. L., Thronson, Jr., H. A., & Johnson, P. E., 1989, Imaging polarimetry of AFGL 2591 and its associated reflection nebula, AJ, 98, 659 https://doi.org/10.1086/115165
  3. Campbell, B., 1984, New radio sources at AFGL 2591 - Young cluster or single star?, ApJ, 287, 334 https://doi.org/10.1086/162692
  4. Carr, J. S., Evans II, N. J., Lacy, J. H., & Zhou, S., 1995, Observation of Infrared and Radio Lines of Molecules toward GL 2591 and Comparison to Physical and Chemical Models, ApJ, 450, 667 https://doi.org/10.1086/176174
  5. Harjunpaa, P., Lehtinen, K., & Haikala, L. K., 2004, The relationship of CO abundance to extinction and N(H2):. Observations of globules and the dependence on star formation activity, A&A, 421, 1087 https://doi.org/10.1051/0004-6361:20035752
  6. Hutawarakorn, B. & Cohen, R. J., 2005, OH maser disc and magnetic field structure in AFGL 2591, MNRAS, 357, 338 https://doi.org/10.1111/j.1365-2966.2005.08656.x
  7. Lada, C. J., Thronson Jr., H. A., Smith, H. A., Schwartz, P. R., & Glacuum, W., 1984, The nature of AFGL 2591 and its associated molecular outflow Infrared and millimeter-wave observations, ApJ, 286, 302 https://doi.org/10.1086/162599
  8. Mitchell, G. F., Curry, C., Maillard, J.-P., & Allen, M., 1989, The gas environment of the young stellar object GL 2591 studied by infrared spectroscopy, ApJ, 341, 1020 https://doi.org/10.1086/167560
  9. Perez-Beaupuits, J. P., Aalto, S., & Gerebro, H., 2007, HNC, HCN and CN in Seyfert galaxies, A&A, 476, 177 https://doi.org/10.1051/0004-6361:20078479
  10. Preibisch, T., Balega, Y. Y., Schertl, D., & Weigelt, G., 2003, Hiding the high excitation in the head of a fast Herbig-Haro jet, A&A, 412, 735 https://doi.org/10.1051/0004-6361:20031449
  11. Tamura, M. & Yamashita, T., 1992, Infrared morphology of mass outflow from GL 2591, ApJ, 391, 710 https://doi.org/10.1086/171382
  12. Thi, W.-F., van Zadelhoff, G.-J., & E. F. van Dishoeck, E. F., 2004, Organic molecules in protoplanetary disks around T Tauri and Herbig Ae stars, A&A, 425, 955 https://doi.org/10.1051/0004-6361:200400026
  13. Trinidad, M. A., Curiel, S., Canto, J., D'Alsssio, P., Rodrıguez, L. F., Torrelles, J. M., Goomez, J. F., Patel, N., & Ho, P. T. P., 2003, Observations of Water Masers and Radio Continuum Emission in AFGL 2591, ApJ, 589, 386 https://doi.org/10.1086/374618
  14. van der Tak, F. F. S., van Dishoeck, E. F., Evans II, N. J., Bakker, E. J., & Blake, G. A., 1999, The Impact of the Massive Young Star GL 2591 on Its Circumstellar Material: Temperature, Density, and Velocity Structure, ApJ, 522, 991 https://doi.org/10.1086/307666
  15. Zuo, Y.-X., Yang, J., Shi, S.-C., Chen, S.-H., Pei, L.- B., Yao, Q.-J., Sun, J.-J. & Lin, Z.-H., 2004, Upgrade Procedure for the Delingha 13.7-m Telescope, ChJAA, 4, 390

Cited by

  1. Herschel/HIFI detections of hydrides towards AFGL 2591 vol.521, 2010, https://doi.org/10.1051/0004-6361/201015098
  2. The standard model of low-mass star formation applied to massive stars: a multi-wavelength picture of AFGL 2591 vol.551, 2013, https://doi.org/10.1051/0004-6361/201219657
  3. The HIFI spectral survey of AFGL 2591 (CHESS) vol.553, 2013, https://doi.org/10.1051/0004-6361/201321069
  4. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591 vol.745, pp.2, 2012, https://doi.org/10.1088/0004-637X/745/2/191