• Title/Summary/Keyword: ISI Channel

Search Result 257, Processing Time 0.024 seconds

Performance Analysis of OFDM-DSRC System Using LMMSE Equalization Technique (LMMSE 등화기법을 적용한 OFDM-DSRC 시스템의 성능분석)

  • Sung Tae-Kyung;Kim Soon-Young;Rhee Myung-Soo;Cho Hyung-Rae
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.23-28
    • /
    • 2005
  • The signal in wireless multi-path channel is affected by fading and ISI because of high data rate transmission, so the signal has the high error rate. The present modulation and demodulation method of DSRC system can not expect sufficient for providing data service over 1 Mbps, so the channel equalization and advanced modulation and demodulation methods are required. OFDM is generally known as an effective technique for high data rate transmission system, since it can prevent ISI by inserting a guard interval. However, a guard interval longer than channel delay spread has to be used in each OFDM symbol period, thus resulting a considerable loss in the efficiency of channel utilization Therefore the equalizer is necessary to cancel ISI to accommodate advanced ITS service with higher bit rate and longer channel delay spread condition In this paper, the channel equalizer for the OFDM -DSRC system was designed and its performance in a multi-path fading environment was evaluated with computer simulation.

Adaptive Techniques for Joint Optimization of XTC and DFE Loop Gain in High-Speed I/O

  • Oh, Taehyoun;Harjani, Ramesh
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.906-916
    • /
    • 2015
  • High-speed I/O channels require adaptive techniques to optimize the settings for filter tap weights at decision feedback equalization (DFE) read channels to compensate for channel inter-symbol interference (ISI) and crosstalk from multiple adjacent channels. Both ISI and crosstalk tend to vary with channel length, process, and temperature variations. Individually optimizing parameters such as those just mentioned leads to suboptimal solutions. We propose a joint optimization technique for crosstalk cancellation (XTC) at DFE to compensate for both ISI and XTC in high-speed I/O channels. The technique is used to compensate for between 15.7 dB and 19.7 dB of channel loss combined with a variety of crosstalk strengths from $60mV_{p-p}$ to $180mV_{p-p}$ adaptively, where the transmit non-return-to-zero signal amplitude is a constant $500mV_{p-p}$.

Performance of MIMO-OFDM System with Linear Pre-Equalization over Fading Channel (페이딩 환경에서 선형 사전 등화를 이용한 MIMO-OFDM 시스템의 성능)

  • Bae, Jung-Nam;Park, Woo-Chul;Kim, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1269-1274
    • /
    • 2010
  • Wireless communication channels with the most severe multipath fading phenomenon that appears each time a different delay is caused by the frequency selective fading. At this time, ISI due to the performance degradation of wireless communication channels and data transfer speed gives the constraints. OFDM technique can remove ISI inserting longer guard interval than channel delay spread of channel between symbol. However, the multi-path delay of the channel to be serious with the guard interval can not eliminate ISI. In this case, using the equalizer must compensate. Especially, use of equalizer is need absolutely as data rate becomes high speed. In this paper, we analyze the BER performance with pre-equalization for MIMO-OFDM over fading channel. The results of this paper can be applied to MIMO-OFDM system with equalization.

High Speed Low Power Decision-Feedback Equalizer Techniques (고속 저전력 결정-피드백 이퀄라이저 기술 동향)

  • Min, Woong-Ki;Kong, Bai-Sun
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • Inter-symbol interference (ISI) due to channel bandwidth limitation constrains the maximum data rate in high speed I/O. Decision feedback equalizer (DFE) is known as the most popular technique for removing ISI. To ensure fast data transmission, not only removing ISI but also raising maximum operating frequency of the circuit itself by relaxing feedback delay margin is important. For single-ended signaling, DFE should cancel out both ISI and high frequency noises. Low-power operation is as important as fast operation because required DFE elements increase as the data rate goes up. This paper surveys recent techniques for fast DFE by removing ISI and high frequency noises, and low power DFE and discusses about their merits and limitations.

Robust Decision Feedback Equalizer for OFDM System under Severe ISI Channel

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1914-1925
    • /
    • 2014
  • Inter-symbol interference (ISI) problem is inevitable when the guard interval (GI) is shorter than the delay spread (DS) for an orthogonal frequency division multiplexing (OFDM) system. Iterative techniques have been proposed to overcome such a problem. However, most of existing algorithms are not efficient for an OFDM system with a small GI working under the channel with a large DS. Especially in the case of the DS spans a longer time than the half of the OFDM symbol duration. On the other hand, conventional algorithms, which can reduce the effects of the severe ISI, often employ several impractical assumptions to support the conclusions. In this paper, we present a robust decision feedback equalizer (DFE) for the OFDM system to overcome the severe ISI problem. The proposed DFE removes the ISI in a same manner as the residual inter-symbol interference cancellation (RISIC) algorithm. However, the inter-carrier interference (ICI) is reduced via cyclicity removal instead of the cyclicity restoration used in the conventional algorithms. The link-level simulation (LLS) results indicate that our proposed DFE scheme can dramatically improve the BER performance when the DS spans longer than the half of ODFM symbol duration.

A 6.4-Gb/s/channel Asymmetric 4-PAM Transceiver for Memory Interface

  • Lee, Kwang-Hun;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.129-131
    • /
    • 2011
  • An 6.4-Gb/s/channel 4-PAM transceiver is designed for a high speed memory application. The asymmetric 4-PAM signaling scheme is proposed to increase the voltage and time margins, and reduces the reference noise effect in a receiver by 33%. To reduce ISI in a channel, 1-tap pre-emphasis of a transmitter is used. The proposed asymmetric 4-PAM transceiver was implemented by using 0.13um 1-poly 6-metal CMOS process with 1.2V supply. The active area and power consumption of 1-charmel transceiver including a PLL are $0.294um^2$ and 6mW, respectively.

  • PDF

Enhanced Inter-Symbol Interference Cancellation Scheme for Diffusion Based Molecular Communication using Maximum Likelihood Estimation

  • Raut, Prachi;Sarwade, Nisha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5035-5048
    • /
    • 2016
  • Nano scale networks are futuristic networks deemed as enablers for the Internet of Nano Things, Body area nano networks, target tracking, anomaly/ abnormality detection at molecular level and neuronal therapy / drug delivery applications. Molecular communication is considered the most compatible communication technology for nano devices. However, connectivity in such networks is very low due to inter-symbol interference (ISI). Few research papers have addressed the issue of ISI mitigation in molecular communication. However, many of these methods are not adaptive to dynamic environmental conditions. This paper presents an enhancement over original Memory-1 ISI cancellation scheme using maximum likelihood estimation of a channel parameter (λ) to make it adaptable to variable channel conditions. Results of the Monte Carlo simulation show that, the connectivity (Pconn) improves by 28% for given simulation parameters and environmental conditions by using enhanced Memory-1 cancellation method. Moreover, this ISI mitigation method allows reduction in symbol time (Ts) up to 50 seconds i.e. an improvement of 75% is achieved.

New Channel Equalizers for Mixed Phase Channel (혼합위상 특성을 고려한 새로운 채널 등화기)

  • 안경승;조주필;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1445-1452
    • /
    • 2000
  • In general, the communication channel can be modeled as inter-symbol interference(ISI) and additive white gaussian noise channel. Viterbi algorithm is optimum detector for transmitted data at transmitter, but it needs large computational complexity. For the sake of this problem, adaptive equalizers are employed for channel equalization which is not attractive for mixed phase channel. In this paper, we propose the effective new channel equalizer for mixed phase channel and show the better performance than previous equalizers.

  • PDF

Performance of CEFSK Systems in Nonlinear Channel Environments (비선형 채널 환경에서 CEFSK 시스템의 성능)

  • Lee, Kee-Hoon;Choi, Byeong-Woo;Shin, Kwan-Ho;Seo, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.79-87
    • /
    • 2013
  • A new modulation technique - correlative encoded FSK (CEFSK) - for use in power and bandwidth limited digital communication system is proposed. CEFSK is free of ISI and generates output signals which have a smooth and continuous phase transition and a reduced envelope fluctuation by keeping correlation between amplitude and phases of two subsequent symbols. In comparison to conventional one-bit differential detected (1DD) GFSK, the performance of the 1DD-CEFSK in a non-linearly amplified (NLA) channel impaired by additive white Gaussian noise (AWGN), ISI and IM, is analyzed via computer simulation. The simulation result shows that, in an NLA single-channel, 1DD-CEFSK provides a signal-to-noise ratio (SNR) advantage of up to 1.2dB and 0.8dB at BER of $1{\times}10^{-4}$ when input back-off (IBO) of HPA is -1.0dB and -3.0dB, respectively. For the same channel environment with multi-channel, 1DD-CEFSK outperforms 1DD-GFSK by 1.1dB in SNR, regardless of the value of IBO.

An 8-Gb/s/channel Asymmetric 4-PAM Transceiver with an Adaptive Pre-emphasis for Memory Interface (메모리 인터페이스를 위한 적응형 프리엠퍼시스를 가지는 8-Gb/s/채널 비균형 4-레벨 펄스진폭변조 입출력회로)

  • Jang, Young-Chan;Jun, Young-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.71-78
    • /
    • 2009
  • An 8${\times}$8-Gb/s/channel 4-PAM transceiver was designed for high speed memory applications by using 70nm DRAM process with 1.35V supply. An asymmetric 4-PAM signaling scheme is proposed to increase the voltage and time margin of upper and lower eyes in 3-class eye opening. A mathematical basis shows that this scheme statistically reduces 33% of reference noise effect in a receiver. Also, an adaptive pre-emphasis scheme, which utilizes a lone-bit pulse with integrator at the receiver, is introduced to reduce ISI for a simple DRAM channel. In this scheme, an integrating clock timing calibration by using a pre-determined pattern is proposed for the optimum ISI measurement.