• Title/Summary/Keyword: IS-object task.

Search Result 469, Processing Time 0.029 seconds

A Study on the Edge Following of Task Object by Industrial Robot Using F/T Sensor (F/T Sensor를 이용한 산업용 로봇에 의한 물체 선단추적에 관한 연구)

  • 최성락;정광조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.26-34
    • /
    • 1998
  • In this paper, a force control algorithm for edge following task is suggested. Through the contact state modeling between rigid part and end-effector of robot, contact force and contact angle that are essencial parameters to build the control strategies for following movement of end-effector are derived. From these two parameters, we discriminate the every contact state into 8 cases and calculate the new moving position and direction simply. For the experiment. RX90 robot from Staubli with robot language V$^{+}$ is applied and F/T sensor is attached to the wrist of robot with RCC. Finally, 3 edge following experiments including the following of corner point are executed with successful results.s.

  • PDF

Scan-to-Geometry Mapping Rule Definition for Building Plane Reverse engineering Automation (건축물 평면 형상 역설계 자동화를 위한 Scan-to-Geometry 맵핑 규칙 정의)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, many scan projects are gradually increasing for maintenance, construction. The scan data contains useful data, which can be generated in the target application from the facility, space. However, modeling the scan data required for the application requires a lot of cost. In example, the converting 3D point cloud obtained from scan data into 3D object is a time-consuming task, and the modeling task is still very manual. This research proposes Scan-to-Geometry Mapping Rule Definition (S2G-MD) which maps point cloud data to geometry for irregular building plane objects. The S2G-MD considers user use case variability. The method to define rules for mapping scan to geometry is proposed. This research supports the reverse engineering semi-automatic process for the building planar geometry from the user perspective.

Comparison of User Interaction Alternatives in a Tangible Augmented Reality Environment (감각형 증강현실 기반 상호작용 대안들의 비교)

  • Park, Sang-Jin;Jung, Ho-Kyun;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.417-425
    • /
    • 2012
  • In recent years, great attention has been paid to using simple physical objects as tangible objects to improve user interaction in augmented reality (AR) environments. In this paper, we address AR-based user interaction using tangible objects, which has been used as a key component for virtual design evaluation of engineered products including digital handheld products. We herein consider the use of two types (product-type and pointer-type) of tangible objects. The user creates input events by touching specified parts of the product-type object with the pointer-type object, and the virtual product reacts to the events by rendering its visual and auditory contents on the output devices. The product-type object is used to reflect the geometric shape of a product of interest and to determine its position and orientation in the AR environment. The pointer-type object is used to recognize the reference position of the pointer (or finger) in the same environment. The rapid prototype of the product is employed as a good alternative to the product-type object, but various alternatives to the pointer-type object can be considered according to fabrication process and touching mechanism. In this paper, we present four alternatives to the pointer-type object and investigate their strong and weak points by performing experimental comparison of their various aspects including interaction accuracy, task performance, and qualitative user experience.

Shape Recognition of 3-D Object Using Texels (텍셀을 이용한 3차원 물체의 형상 인식)

  • Kim, Do-Nyun;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.460-464
    • /
    • 1990
  • Texture provides an important source of information about the local orientation of visible surfaces. An important task that arises in many computer vision systems is the reconstruction of three-dimensional depth information from two-dimensional images. The surface orientation of texel is classified by the Artificial Neural Network. The classification method to recognize the shape of 3D object with artificial neural network requires less developing time comparing to conventional method. The segmentation problem is assumed to be solved. The surface in view is smooth and is covered with repeated texture elements. In this study, 3D shape reconstruct using interpolation method.

  • PDF

Implementation of Road and Object Detection System for Intelligent Vehicle (지능형 자동차를 위한 지면 및 물체 탐지 시스템 구현)

  • Hwang, Jae-Pil;Park, Jin-Soo;Kim, Eun-Tai
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1141-1142
    • /
    • 2008
  • For intelligent vehicles, recognizing the sounding is an important task. In this paper we propose an road area detection system. This system uses u-disparity and v-disparity map. v-disparity map is used to find the road area. u-disparity is used to cluster the area that is an object. The test results and overall system is discribed in this paper.

  • PDF

Robust architecture search using network adaptation

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.290-294
    • /
    • 2021
  • Experts have designed popular and successful model architectures, which, however, were not the optimal option for different scenarios. Despite the remarkable performances achieved by deep neural networks, manually designed networks for classification tasks are the backbone of object detection. One major challenge is the ImageNet pre-training of the search space representation; moreover, the searched network incurs huge computational cost. Therefore, to overcome the obstacle of the pre-training process, we introduce a network adaptation technique using a pre-trained backbone model tested on ImageNet. The adaptation method can efficiently adapt the manually designed network on ImageNet to the new object-detection task. Neural architecture search (NAS) is adopted to adapt the architecture of the network. The adaptation is conducted on the MobileNetV2 network. The proposed NAS is tested using SSDLite detector. The results demonstrate increased performance compared to existing network architecture in terms of search cost, total number of adder arithmetics (Madds), and mean Average Precision(mAP). The total computational cost of the proposed NAS is much less than that of the State Of The Art (SOTA) NAS method.

Hand Reaching Movement Acquired through Reinforcement Learning

  • Shibata, Katsunari;Sugisaka, Masanori;Ito, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.474-474
    • /
    • 2000
  • This paper shows that a system with two-link arm can obtain hand reaching movement to a target object projected on a visual sensor by reinforcement learning using a layered neural network. The reinforcement signal, which is an only signal from the environment, is given to the system only when the hand reaches the target object. The neural network computes two joint torques from visual sensory signals, joint angles, and joint angular velocities considering the urn dynamics. It is known that the trajectory of the voluntary movement o( human hand reaching is almost straight, and the hand velocity changes like bell-shape. Although there are some exceptions, the properties of the trajectories obtained by the reinforcement learning are somewhat similar to the experimental result of the human hand reaching movement.

  • PDF

Cooperative control of tightly-coupled multiple mobile robots (엄격히 상호 간섭하는 이동 로봇의 협동 제어)

  • 이승환;이연정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.556-559
    • /
    • 1997
  • In this paper, we propose a cooperative multi-robot control algorithm. Specifically, the cooperative task is that two mobile robots should transfer a long rigid object along a predefined path. To resolve the problem, we introduce the master-slave concept for two mobile robots, which have the same structure. According to the velocity of the master robot and the positions of two robots on the path, the velocity of the slave robot is determined. In case that the robots can't move further, the role of the robot is interchanged. The effectiveness of this decentralized algorithm is proved by computer simulations.

  • PDF

Visual servoing by a fuzzy reasoning method (퍼지추론에 의한 시각적 구동방법)

  • 김태원;서일홍;오상록
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.984-989
    • /
    • 1991
  • In this paper, a novel type of a visual servoing method is proposed for eye-in-hand robots by employing a self-organizing fuzzy controller. For this is there defined a new Jacobian riot to be the function of a relative position of the object but to be a function of the only image features. Instead of obtaining an analytic form of the proposed Jacobian, a self-organizing fuzzy controller is then proposed to alleviate difficulties in real-time implementation. To show the validities, the proposed method is applied to a 2-dimensional visual servoing task.

  • PDF

Contact control of a probing manipulator contacting with plastically deformable objects (소성변형가능한 물체와 접촉하는 프로브 매니퓰레이터의 접촉제어)

  • 심재홍;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.221-224
    • /
    • 1996
  • Since impact phenomenon is highly nonlinear, the analysis and control of the contact motion has been a challenging subject. Various researches have been carried out mostly for the contact of a rigid robotic manipulator with a stiff and elastic environment. This paper is motivated by a new contact task: the in-circuit test of a printed circuit board. In this process, high speed contact occurs between a rigid probing manipulator and a plastically deformable work environment. A new dynamic model of the impact controlled probing task has been proposed, considering contact with the plastically deformable object. Approaching velocity conditions to avoid an excess of the allowable penetration depth and control the generated impact force properly are derived from the proposed model. The results of the simulation studies are made for various probing conditions and show the validity of the proposed model.

  • PDF