• Title/Summary/Keyword: IS-MAC

Search Result 1,810, Processing Time 0.029 seconds

Design and Implementation of High-speed Wireless LAN System (고속 무선 LAN 시스템 설계 및 구현)

  • Kim, You-Jin;Lee, Sang-Min;Jung, Hae-Won;Lee, Hyeong-Ho;Ki, Jang-Geun;Cho, Hyun-Mook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.6
    • /
    • pp.11-17
    • /
    • 2001
  • Design and implementation of the MAC protocol processor prototype for high speed wireless LAN, which has interface with 5GHz OFDM PHY layer, is presented. We analyze the IEEE 802.11 MAC protocol specification and then separate the MAC protocol functions to be implemented by hardware and firmware and define the interface in which frames can be exchanged. That is, it is considered that high speed queue processing and interfaces with RISC processor and OFDM PHY layer. Protocol control and transmission/reception functions of the MAC functions are implemented in hardware in order to guarantee high speed processing in MAC layer. The developed MAC hardware block operates at 10MHz main clock. Therefore, transmission rate in PHY layer is about 80Mbps because data transmission/reception between MAC layer and PHY layer is performed as unit of octet. The designed FPGA MAC function chip has been implemented in wireless LAN test board and it is verified that DCF function is operated correctly.

  • PDF

Analysis of the S-MAC/T-MAC Protocol for Wireless Sensor Networks (무선 센서망의 에너지 효율적 MAC(S-MAC/T-MAC) 성능 분석)

  • Lee Woo-Chul;Lee Yoo-Tae;Kim Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.99-103
    • /
    • 2006
  • In this paper, we focus on the problem of designing an energy efficient MAC protocol for wireless sensor networks and analyze S(Sensor)-MAC and T(Time-out)-MAC. S-MAC is based on the concept of the 'listen/sleep mode cycle'. This applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data moves through the network. However unlike the S-MAC, where the duration of the cycle is fixed, T-MAC introduces an adaptive duty cycle in a novel way: by dynamical ending the active part of it. This reduces the amount of energy wasted on idle listening, in which nodes wait for potentially incoming messages while still maintaining a reasonable throughput. In this paper we discuss the design of these two Protocols. We analyze them from the aspect of latency, throughput, and power savings when using the OMNeT++ simulator in various environments.

  • PDF

Performance Evaluation of X-MAC/BEB Protocol for Wireless Sensor Networks

  • Ullah, Ayaz;Ahn, Jong-Suk
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.857-869
    • /
    • 2016
  • This paper proposes an X-MAC/BEB protocol that runs a binary exponential backoff (BEB) algorithm on top of an X-MAC protocol to save more energy by reducing collision, especially in densely populated wireless sensor networks (WSNs). X-MAC, a lightweight asynchronous duty cycle medium access control (MAC) protocol, was introduced for spending less energy than its predecessor, B-MAC. One of X-MAC 's conspicuous technique is a mechanism to allow senders to promptly send their data when their receivers wake up. X-MAC, however, has no mechanism to deal with sudden traffic fluctuations that often occur whenever closely located nodes simultaneously diffuse their sense data. To precisely evaluate the impact of the BEB algorithm on X-MAC, this paper builds an analytical model of X-MAC/BEB that integrates the BEB model with the X-MAC model. The analytical and simulation results confirmed that X-MAC/BEB outperformed X-MAC in terms of throughput, delay, and energy consumption, especially in congested WSNs.

A Study of MAC Protocol for effective channel usage in Wireless Sensor Networks (무선 센서 네트워크에서 효율적인 채널 사용을 위한 MAC 프로토콜에 관한 연구)

  • Choi, Ji-Hyoung;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.371-374
    • /
    • 2007
  • The effective channel usage is important for delivering a large number of packets in a short time, and it enhances channel utilization in sensor networks. Channel utilization is a good metric to illustrate MAC protocol efficiency. This paper presents the MAC(Media Access Control) Protocol that combines the advantages of B-MAC(Berkeley-MAC) and TDMA(Time Division Multiple Access) to obtain high channel utilization. Basically, Using the backoff, CCA(Clear Channel Assessment) and LPL(Low Power Listen) mechanisms reduce collision and energy consumption, this protocol makes at the same time transmission method different depending on contention state and obtains high channel utilization. Through the simulation, this paper shows enhanced performance comparing with existing MAC Protocols.

  • PDF

An Energy and Delay Efficient Hybrid MAC Protocol for Multi-Hop Wireless Sensor Networks (멀티 홉 무선센서네트워크에서 에너지와 지연에 효율적인 하이브리드 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.471-476
    • /
    • 2015
  • In this paper, we propose an energy efficient hybrid MAC protocol for multi-hop wireless sensor networks. The proposed MAC protocol used a hybrid mechanism, in which contention-based MAC protocol and contention free MAC protocol are combined. The sensor nodes located far from the sink node usually send few data packet since they try to send measured data by themselves. So contention-based MAC protocol is useful among them. But other nodes located near sink node usually have lots of data packets since they plays as a relay node. Contention-based MAC protocol among them is not suitable. Using contention-based MAC protocol in heavy data traffic environment, packet collisions and transmission delay may increase. In this paper, slot assignment between sender nodes by sink node is used. The proposed mechanism is efficient in energy and latency. Results showed that our MAC protocol outperformed other protocol in terms of data packet delivery delay and energy consumption.

Energy Efficient and Multimedia Traffic Friendly MAC Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적이고 멀티미디어 트래픽에 적합한 MAC 프로토콜)

  • Kim, Seong Cheol;Kim, Hye Yun;Kim, Joong Jae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1460-1465
    • /
    • 2016
  • In this paper, we propose an energy efficient and multimedia traffic friendly MAC protocol (EEMF-MAC) that controls sender's wakeup period based on the data packet's transmission urgency and the receiver's wakeup periods based on the received data packet traffic loads. The protocol is useful for applications such as object tracking, real time data gathering, in which priority-based packet transmission is required. The basic idea of EEMF-MAC is that it uses the priority concept with transmission urgency of sender's data packet to reduce the transmission delay of the urgent data and it also uses duty cycling technique in order to achieve energy efficiency. EEMF-MAC showed a better performance in energy efficiency and packet transmission delay compared to existing protocols, RI-MAC and EE-RI-MAC.

Security Analysis of MAC Algorithm using Block Cipher (블록 암호 알고리즘을 애용한 MAC 분석)

  • Seo Chang-Ho;Yun Bo-Hyun;Maeng Sung-Reol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.39-47
    • /
    • 2005
  • This paper proposes and analyzes the MAC(Message Authentication Code) algorithm that is used for the transition integrity and the entity authentication of message. The MAC algorithm uses the DES algorithm which has 64-bit block and 56-bit key and we compare the security according to 64-bit and 32-bit length of MAC value. Moreover, we use the SEED algorithm which has 128-bit block and 128-bit key and compare the security according to 128-bit and 64-bit length of MAC value. We analyze the security the forgery attack according to length of message and length of MAC value. this paper, a coarse-to-fine optical flow detection method is proposed. Provided that optical flow gives reliable approximation to two-dimensional image motion, it can be used to recover the three-dimensional motion. but usually to get the reliable optical flows are difficult. The proposed algorithm uses Horn's algorithm (or detecting initial optical flow, then Thin Plate Spline is introduced to warp a image frame of the initial optical flow to the next image frame. The optical flow for the warped image frame is again used iteratively until the mean square error between two image sequence frames is lowered. The proposed method is experimented for the real moving Picture image sequence. The proposed algorithm gives dense optical flow vectors.

  • PDF

Performance Improvement of IEEE 802.15.4 MAC For WBAN Environments in Medical (의료 WBAN 환경을 위한 IEEE 802.15.4 MAC 성능 개선)

  • Lee, Jung-Jae;Hong, Jae-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • WBAN(Wireless Body Area Network) is a Wireless Sensor Network for supporting various applications around body within 2~3m which consists of medical and non-medical device. MAC in WBAN environment should satisfy requirements such as low power consumption, various transmission rate, QoS, and duty-cycle, efficiently distribute frequency band, be strong at traffic load and save energy. This paper proposes AQ(Adaptive Queuing) MAC superframe structure for efficient energy use, considering the increase of traffic load. The simulation result also show that transmission rate and average MAC delay rate is improved comparing IEEE 802.15.4 MAC with AQ MAC.

Energy Efficient Medium Access Control for Large-Scale Sensor Networks (대규모 센서 네트워크에서의 에너지 효율성을 고려한 MAC 프로토콜)

  • Bae, Jin-Heon;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.31-36
    • /
    • 2007
  • This paper proposes Co-MAC (Coexistence MAC), an energy efficient medium access control protocol designed for large-scale sensor networks. In Co-MAC protocol, an overall network is divided into independent subnets, and each subnet orthogonally operates on time line in a temporal fashion. The basic idea of Co-MAC is to evenly distribute sensor nodes in a certain geographic area based on subnets to minimize overhearing which means the reception of unnecessary data packets from neighboring nodes. In our simulation, it was observed that energy efficiency of Co-MAC outperforms conventional MAC protocols under the given conditions.

Performance Analysis of Multicast Relay Transmissions in WiMedia D-MAC for OSMU N-Screen Services (OSMU N-스크린 서비스를 위한 WiMedia D-MAC에서 멀티캐스트 릴레이 전송 기술의 성능 분석)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2267-2273
    • /
    • 2016
  • In this paper, WiMedia Distributed-MAC protocol is adopted for development of an OSMU (One Source Multi Use) N-screen wireless multicast service. But, when considering wireless communication environment where channel error rate is time-variant, N-screen high-speed data is vulnerable to be lost. For this problem, a multicast relay scheme is proposed by analyzing Distributed-MAC protocol. In proposed multicast relay scheme, Multicast-free DRP Availability IE is combined and the relay node suitable for N-screen multicast transmissions is selected. Through this operation, it can avoid wireless channel with high errors and can transmit N-screen high-speed data. In simulation results, the proposed multicast relay scheme is compared with conventional Distributed-MAC multicast scheme in view points of throughput and energy consumption according to various numbers of multicast nodes and BER (Bit Error Rate) values in wireless channel. Through simulation results, it is explained that proposed multicast relay scheme should be adopted in WiMedia Distributed-MAC protocol to realize OSMU N-screen wireless multicast services.