• Title/Summary/Keyword: IS-GEO

Search Result 2,824, Processing Time 0.037 seconds

The Study on Formation of Deoneum of 19th Century's Sugungga (19세기 수궁가의 더늠 형성에 관한 연구)

  • Lee, Jin O
    • (The) Research of the performance art and culture
    • /
    • no.36
    • /
    • pp.185-221
    • /
    • 2018
  • This study examined the process of the formation of Deoneum, Sugungga(水宮歌), and its tendency of the change through the trace of the Pansori masters who worked in 19th century. The time that the main group of the Sugungga masters appeared in the Pansory history is estimated in early 19th century. The Sugungga masters in this time could be divided in two groups, one is the early days masters who worked in early 19th century and the other is the latter days masters who worked in middle and late 19th century. Kwon Sam-deuk(權三得), Song Heung-lok(宋興祿), Yeom Gyeo-dal(廉季達), and Shin Man-yeob(申萬葉) are the Sugungga masters who worked in early 19th century. By the records they left, I could confirm that they used the description about the dramatic characteristics in the work and Soritjo(Pansori master's tonality), like the appearance of 'Bangge(crab)' and 'Tiger', and particularly they developed which has the scene of the Rabbit's deceiving the Dragon King and Rabbit's return, 'Goandaejangja(寬大長者)', 'Gaja-Eoseoga', 'Sojinowha(笑指蘆花)', 'Apnae-Beodeuleun' and the scene of 'Rabbit's curse(the part that Rabbit curses Byeljubu)' etc. I could understand that the interest of the early days Pansori masters about Sugungga is on the characters and the latter part of the work. The separation of Dongpyeonje(東便制) and Seopyeonje(西便制) of Pansori was done in the middle and late 19th century. As the Dongpyeonje master, Song Wu-ryong(宋雨龍), Park Man-sun(朴萬順), Song Man-gab(宋萬甲), Shin Hak-jun(申鶴俊) and Yu Seong-jun(劉成俊) worked. As the Seopyeonje masters, Park Yu-jeon(朴裕全), Kim geo-bok(金巨福), Kim Su-yeong(金壽永) and Baek Gyeong-jun(白慶順) etc. sang Sugungga. The Dongpyeonje masters developed the 'Toggigibyeon(토끼奇變)' related Deoneum paying attention on the latter part of Sugungga same as the early days masters. Meanwhile it looks like that they had interest in developing the parts which belong to the middle and early parts of Sugungga like 'Toggiwhasang(토끼畵像)', 'Gogocheonbyeon(皐皐天邊)' and 'Tobyeolmundab(兎鱉問答)'. The Seopyeonje masters developed the parts belong to the early part of Sugungga, which are related to Dragon King and the courtiers in Sugung palace, like 'YongwangTansik(龍王歎息)'. And I could confirm that they developed the parts influenced by Shin Jaehyo's editorials like 'Tosahobi(兎死狐悲)' and 'Goguksancheon(故國山川)' etc. In short, I could confirm the trend that the Pansori masters in 19th century had interest in from the latter part to the early part of Sugungga. If taking a look focusing on main characters, they moved their interest in from Rabbit to the courtiers including Byeoljubu(鱉主簿) and Dragon King in Sugung palace, and it could say that, in this trend, Sori part and Deoneum were developed.

An Outlier Detection Using Autoencoder for Ocean Observation Data (해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구)

  • Kim, Hyeon-Jae;Kim, Dong-Hoon;Lim, Chaewook;Shin, Yongtak;Lee, Sang-Chul;Choi, Youngjin;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.265-274
    • /
    • 2021
  • Outlier detection research in ocean data has traditionally been performed using statistical and distance-based machine learning algorithms. Recently, AI-based methods have received a lot of attention and so-called supervised learning methods that require classification information for data are mainly used. This supervised learning method requires a lot of time and costs because classification information (label) must be manually designated for all data required for learning. In this study, an autoencoder based on unsupervised learning was applied as an outlier detection to overcome this problem. For the experiment, two experiments were designed: one is univariate learning, in which only SST data was used among the observation data of Deokjeok Island and the other is multivariate learning, in which SST, air temperature, wind direction, wind speed, air pressure, and humidity were used. Period of data is 25 years from 1996 to 2020, and a pre-processing considering the characteristics of ocean data was applied to the data. An outlier detection of actual SST data was tried with a learned univariate and multivariate autoencoder. We tried to detect outliers in real SST data using trained univariate and multivariate autoencoders. To compare model performance, various outlier detection methods were applied to synthetic data with artificially inserted errors. As a result of quantitatively evaluating the performance of these methods, the multivariate/univariate accuracy was about 96%/91%, respectively, indicating that the multivariate autoencoder had better outlier detection performance. Outlier detection using an unsupervised learning-based autoencoder is expected to be used in various ways in that it can reduce subjective classification errors and cost and time required for data labeling.

Demonstration-scale Offshore CO2 Storage Project in the Pohang Basin, Korea (포항분지 해상 중소규모 CO2 저장 실증연구)

  • Kwon, Yi Kyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.133-160
    • /
    • 2018
  • $CO_2$ storage is a very important technology for reduction of greenhouse gas emissions and has been considered as almost the only viable and effective option for immediate large-scale $CO_2$ sequestration. Small-scale demonstration project for offshore $CO_2$ storage in the Pohang Basin is the transitional stage R&D program for technological preparation of large-scale $CO_2$ storage project in Korea. Through the extensive exploration research for prospective $CO_2$ storage sites, the offshore strata in the Pohang Basin was recommended for the storage formation of the small-scale demonstration project. The Pohang Offshore Storage Project launched at 2013, and has accomplished the technical demonstration and technological independence in a wide range of $CO_2$ storage technology, such as geophysical exploration, storage site characterization, storage design, offshore platform construction, injection-well drilling and completion, deployment of injection facility, operation of $CO_2$ injection, and $CO_2$ monitoring. The project successfully carried out $CO_2$ test injection in early 2017, and achieved its final goal for technical development and demonstration of $CO_2$ storage in Korea. The realization of $CO_2$ injection in this project is the measurable result and has been recorded as the first success in Korea. The Pohang Offshore Storage Project has a future plan for the continuous operation of $CO_2$ injection and completion of $CO_2$ monitoring system. The project has provided in-house technical and practical expertises, which will be a solid foundation for the commercial-scale $CO_2$ storage business in Korea. Additionally, the project will help to secure national technical competitiveness in growing international technology market for $CO_2$ storage.

Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island (정밀 지오이드 및 조석모델을 활용한 안면도 지역의 높이기준면 변환 연구)

  • Roh, Jae Young;Lee, Dong Ha;Suh, Yong Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • The height datum of Korea is currently separated into land and sea, which makes it difficult to acquire homogeneous and accurate height information throughout the whole nation. In this study, we therefore tried to suggest the more effective way to transform the height information were constructed separately according to each height datum on land and sea to those on the unique height datum using precise geoid models and tidal observations in Korea. For this, Anmyeon island was selected as a study area to develop the precise geoid models based on the height datums land (IMSL) and sea (LMSL), respectively. In order to develop two hybrid geoid models based on each height datum of land an sea, we firstly develop a precise gravimetric geoid model using the remove and restore (R-R) technique with all available gravity observations. The gravimetric geoid model were then fitted to the geometric geoidal heights, each of which is represented as height datum of land or sea respectively, obtained from GPS/Leveling results on 15 TBMs in the study area. Finally, we determined the differences between the two hybrid geoid models to apply the height transformation between IMSL and LMSL. The co-tidal chart model of TideBed system developed by Korea Hydrographic and Oceanographic Agency (KHOA) which was re-gridded to have the same grid size and coverage as the geoid model, in order that this can be used for the height datum transformation from LMSL to local AHHW and/or from LMSL to local DL. The accuracy of height datum transformation based on the strategy suggested in this study was approximately ${\pm}3cm$. It is expected that the results of this study can help minimize not only the confusions on the use of geo-spatial information due to the disagreement caused by different height datum, land and sea, in Korea, but also the economic and time losses in the execution of coastal development and disaster prevention projects in the future.

Application of Molecular Biological Technique for Development of Stability Indicator in Uncontrolled Landfill (불량매립지 안정화 지표 개발을 위한 분자생물학적 기술의 적용)

  • Park, Hyun-A;Han, Ji-Sun;Kim, Chang-Gyun;Lee, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.128-136
    • /
    • 2006
  • This study was conducted for developing the stability parameter in uncontrolled landfill by using a biomolecular investigation on the microbial community growing through leachate plume. Landfill J(which is in Cheonan) and landfill T(which is in Wonju) were chosen for this study among a total of 244 closed uncontrolled landfills. It addressed the genetic diversity of the microbial community in the leachate by 165 rDNA gene cloning using PCR and compared quantitative analysis of denitrifiers and methanotrophs with the conventional water quality parameters. From the BLAST search, genes of 47.6% in landfill J, and 32.5% in landfill T, respectively, showed more than 97% of the similarity where Proteobacteria phylum was most significantly observed. It showed that the numbers of denitrification genes, i.e. nirS gene and cnorB gene in the J site are 7 and 4 times higher than those in T site, which is well reflecting from a difference of site closure showing 7 and 13 years after being closed, respectively. In addition, the quantitative analysis on methane formation gene showed that J1 spot immediately bordering with the sources has the greatest number of methane formation bacteria, and it was decreased rapidly according to distribute toward the outer boundary of landfill. The comparative investigation between the number of genes, i.e. nirS gene, cnorB gene and MCR gene, md the conventional monitoring parameters, i.e. TOC, $NH_3-N,\;NO_3-N,\;NO_2-N,\;Cl^-$, alkalinity, addressed that more than 99% of the correlation was observed except for the $NO_3-N$. It was concluded that biomolecular investigation was well consistent with the conventional monitoring parameters to interpret their influences and stability made by leachate plume formed in downgradient around the uncontrolled sites.

Study on Adsorption Characteristics of Arsenic on Magnetite (자철석의 비소에 대한 흡착특성 연구)

  • Jeong, Hyeon-Su;Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • Arsenic contamination in soil and groundwater has recently been one of the most serious environmental concerns. This arsenic contamination can be originated from natural or anthropogenic sources. It has been well known that arsenic behavior in geo-environmental is controlled by various oxides or hydroxides, such as those of iron, manganese, and aluminum, and clay minerals. Among those, particularly, iron (oxy)hydroxides are the most effective scavengers for arsenic. For this reason, this study characterized arsenic adsorption of magnetite which is a kind of iron oxide in nature. The physicochemcial features of the magnetite were investigated to evaluate adsorption of arsenite [As(III)] and arsenate [As(V)] onto magnetite. In addition to experiments on adsorption equilibria, kinetic experiments were also conducted. The point of zero charge (PZC) and specific surface area of the laboratory-synthesized magnetite used as an arsenic adsorbent were measured 6.56 and $16.6\;g/m^2$, which values seem to be relatively smaller than those of the other iron (oxy)hydroxides. From the results of equilibria experiments, arsenite was much more adsorbed onto magnetite than arsenate, indicating the affinity of arsenite on magnetite is larger than arsenate. Arsenite and arsenate showed adsorption maxima at pHs 7 and 2, respectively. In particular, adsorption of arsenate decreased with increase in pH as a result of electrical repulsion caused by anionic arsenate and negatively-charged surface of magnetite. These results indicate that the surface charge of magnetite and the chemical speciation of arsenic should be considered as the most crucial factors in controlling arsenic. The results of kinetic experiments show that arsenate was adsorbed more quickly than arsenite and adsorption of arsenic was investigated to be mostly completed within the duration of 4 hours, regardless of chemical speciation of arsenic. When the results of kinetic experiments were fitted to a variety of kinetic models proposed so far, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto magnetite.

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.

GOCI-II Capability of Improving the Accuracy of Ocean Color Products through Fusion with GK-2A/AMI (GK-2A/AMI와 융합을 통한 GOCI-II 해색 산출물 정확도 개선 가능성)

  • Lee, Kyeong-Sang;Ahn, Jae-Hyun;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1295-1305
    • /
    • 2021
  • Satellite-derived ocean color products are required to effectively monitor clear open ocean and coastal water regions for various research fields. For this purpose, accurate correction of atmospheric effect is essential. Currently, the Geostationary Ocean Color Imager (GOCI)-II ground segment uses the reanalysis of meteorological fields such as European Centre for Medium-Range Weather Forecasts (ECMWF) or National Centers for Environmental Prediction (NCEP) to correct gas absorption by water vapor and ozone. In this process, uncertainties may occur due to the low spatiotemporal resolution of the meteorological data. In this study, we develop water vapor absorption correction model for the GK-2 combined GOCI-II atmospheric correction using Advanced Meteorological Imager (AMI) total precipitable water (TPW) information through radiative transfer model simulations. Also, we investigate the impact of the developed model on GOCI products. Overall, the errors with and without water vapor absorption correction in the top-of-atmosphere (TOA) reflectance at 620 nm and 680 nm are only 1.3% and 0.27%, indicating that there is no significant effect by the water vapor absorption model. However, the GK-2A combined water vapor absorption model has the large impacts at the 709 nm channel, as revealing error of 6 to 15% depending on the solar zenith angle and the TPW. We also found more significant impacts of the GK-2 combined water vapor absorption model on Rayleigh-corrected reflectance at all GOCI-II spectral bands. The errors generated from the TOA reflectance is greatly amplified, showing a large error of 1.46~4.98, 7.53~19.53, 0.25~0.64, 14.74~40.5, 8.2~18.56, 5.7~11.9% for from 620 nm to 865 nm, repectively, depending on the SZA. This study emphasizes the water vapor correction model can affect the accuracy and stability of ocean color products, and implies that the accuracy of GOCI-II ocean color products can be improved through fusion with GK-2A/AMI.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.

Trend Analysis of Vegetation Changes of Korean Fir (Abies koreana Wilson) in Hallasan and Jirisan Using MODIS Imagery (MODIS 시계열 위성영상을 이용한 한라산과 지리산 구상나무 식생 변동 추세 분석)

  • Minki Choo;Cheolhee Yoo;Jungho Im;Dongjin Cho;Yoojin Kang;Hyunkyung Oh;Jongsung Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.325-338
    • /
    • 2023
  • Korean fir (Abies koreana Wilson) is one of the most important environmental indicator tree species for assessing climate change impacts on coniferous forests in the Korean Peninsula. However, due to the nature of alpine and subalpine regions, it is difficult to conduct regular field surveys of Korean fir, which is mainly distributed in regions with altitudes greater than 1,000 m. Therefore, this study analyzed the vegetation change trend of Korean fir using regularly observed remote sensing data. Specifically, normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), land surface temperature (LST), and precipitation data from Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievalsfor GPM from September 2003 to 2020 for Hallasan and Jirisan were used to analyze vegetation changes and their association with environmental variables. We identified a decrease in NDVI in 2020 compared to 2003 for both sites. Based on the NDVI difference maps, areas for healthy vegetation and high mortality of Korean fir were selected. Long-term NDVI time-series analysis demonstrated that both Hallasan and Jirisan had a decrease in NDVI at the high mortality areas (Hallasan: -0.46, Jirisan: -0.43). Furthermore, when analyzing the long-term fluctuations of Korean fir vegetation through the Hodrick-Prescott filter-applied NDVI, LST, and precipitation, the NDVI difference between the Korean fir healthy vegetation and high mortality sitesincreased with the increasing LST and decreasing precipitation in Hallasan. Thissuggests that the increase in LST and the decrease in precipitation contribute to the decline of Korean fir in Hallasan. In contrast, Jirisan confirmed a long-term trend of declining NDVI in the areas of Korean fir mortality but did not find a significant correlation between the changes in NDVI and environmental variables (LST and precipitation). Further analyses of environmental factors, such as soil moisture, insolation, and wind that have been identified to be related to Korean fir habitats in previous studies should be conducted. This study demonstrated the feasibility of using satellite data for long-term monitoring of Korean fir ecosystems and investigating their changes in conjunction with environmental conditions. Thisstudy provided the potential forsatellite-based monitoring to improve our understanding of the ecology of Korean fir.