Threat evaluation is a process to estimate the threat score which enemy aerial threat poses to defended assets. The objective of threat evaluation is concerned with making an engagement priority list for optimal weapon allocation. Traditionally, the threat evaluation of massive air threats has been carried out by air defence experts, but the human decision making is less effective in real aerial attack situations with massive enemy fighters. Therefore, automation to enhance the speed and efficiency of the human operation is required. The automatic threat evaluation by air defense experts who will perform multi-variable judgment needs formal models to accurately quantify their linguistic evaluation of threat level. In this paper we propose a threat evaluation model by using a fuzzy rule-based inference method. Fuzzy inference is an appropriate method for quantifying threat level and integrating various threat attribute information. The performance of the model has been tested with a simulation that reflected real air threat situation and it has been verified that the proposed model was better than two conventional threat evaluation models.
It is difficult for a MWR(Missile Warning Radar) to perform a threat decision accurately since there is no tracking part which gives more accurate threat information to the MWR. In this paper, the threat decision algorithm is proposed using an azimuth angular rate to improve the accuracy. The azimuth angular rate is dependent upon the direction of an approaching target. The target is classified into a threat or non-threat using a boundary condition of the azimuth angular rate. The boundary condition is determined using the Monte-Carlo simulation. The performance of the proposed algorithm is evaluated using this condition at field tests of MWR. The efficiency of the proposed method for the threat decision is proved by comparing the results of field tests with the simulation results.
The Electronic Warfare Computer for the Aircraft Survivability Equipment will improve the ability for countermeasures by analysis about threat information. This paper suggests method that threat data integration of multiple sensors(Radar Warning Receiver, Laser Warning Receiver, Missile Warning Receiver). The algorithm of threat data integration is based on detected threat sequence and azimuth information. The threat sequence information is analyzed in advance and the azimuth data is received from sensors. The suggested method is evaluated through simulation under the environment like real helicopter.
본 연구는 유출위협 탐지 연구에 활용되는 유출위협 데이터 셋의 한계점을 분석하고 현재의 문제를 극복하기 위해 보안솔루션을 활용하여 공개된 유출위협 데이터와 비교 분석한다. 이를 통해 유출위협 탐지에 적합한 데이터 포맷을 설계하고 블록체인 기술을 사용하여 서로 다른 기관 및 기업 간 유출위협 정보를 안전하게 공유할 수 있는 시스템을 구현한다. 현재 연구원들에게 공개된 유출위협 데이터 셋에서 실제 사건을 기반으로 수집한 데이터 셋은 없다. 공개된 데이터 셋은 연구를 위해 임의로 만들어진 가상의 합성데이터로 학습모델로 사용 시 실제 환경에서의 많은 한계점이 존재한다. 본 연구에서는 이러한 한계점들을 개선하기 위해서 프라이빗 블록체인 설계하여 소속이 다른 기관끼리 안전한 정보공유를 위해 참여자 간 합의와 검증을 통해 신뢰성을 높이고 정보의 무결성과 정합성을 유지하는 방안을 도출하였다. 제시한 방법은 유출위협 수집기를 통해 데이터를 수집하고 블록체인 기반 공유 시스템을 통해 합성데이터가 아닌 실제 위협을 가했던 양질의 데이터 셋을 수집하여 현재의 유출위협 데이터 셋 문제를 해결하고 향후 내부자 유출위협 탐지 모델에 기여할 것으로 사료된다.
Threats targeting cyberspace are becoming more intelligent and increasing day by day. To cope with such cyber threats, it is essential to improve the coping ability of system security officers. In this paper, we propose a simulated threat generator that automatically generates cyber threats for cyber defense training. The proposed Simulated Threat Generator is designed with MITRE ATT & CK(Adversarial Tactics, Techniques and Common Knowledge) framework to easily add an evolving cyber threat and select the next threat based on the threat execution result.
지상기동 장비에 장착되는 미사일 경고 레이더는 탐지된 표적에 의한 위협을 효과적으로 판단해야 한다. 본 논문에서는 위협 판단 기법인 선형 근사 알고리즘과 가중 선형 근사 알고리즘에 대해 확률 모델을 적용한 시뮬레이션을 통해 성능을 평가하였다. 또한 실제 측정을 통해 위협 판단 알고리즘의 타당성을 확인하였다.
보안관제 분야의 실제 업무활동에 대해서는 거의 연구가 없는 실정이다. 이에 본 논문에서는 보안관제의 위협정보 탐지 대응시간 모델링을 통해 적정 투입인력 규모 산정에 기여하고 최신 보안솔루션 투입시의 효과성 분석 등에 활용할 수 있는 실질적인 연구 방법론을 제시하고자 한다. 보안관제센터에서 수행하는 전체 위협정보 탐지대응시간은 TIDRT(Total Intelligence Detection & Response Time)로 정의한다. 전체 위협정보 탐지 대응시간(TIDRT)는 내부 위협정보 탐지대응시간(IIDRT, Internal Intelligence Detection & Response Time)과 외부 위협정보(EIDRT, External Intelligence Detection & Response Time)의 합으로 구성된다. 내부위협정보 탐지대응시간(IIDRT)는 다섯 단계의 소요시간의 합으로 계산할 수 있다. 본 연구의 궁극적인 목표는 보안관제센터의 주요한 업무활동들을 수식으로 모델링하여 보안관제센터의 사이버 위협정보 탐지대응시간 계산식을 산정하는데 있다. 2장에서는 선행연구를 살펴보고, 3장에서는 전체 위협정보 탐지대응시간의 계산식을 모델링한다. 4장에서 결론으로 끝을 맺는다.
Threat hunting is defined as a process of proactively and iteratively searching through networks to detect and isolate advanced threats that evade existing security solutions. The main concept of threat hunting is to find out weak points and remedy them before actual cyber threat has occurred. And HMM(Hunting Maturity Matrix) is suggested to evolve hunting processes with five levels, therefore, CSOC(Cyber Security Operations Center) can refer HMM how to make them safer from complicated and organized cyber attacks. We are developing a system for cyber situation awareness system with pro-active threat hunting process called unMazeTM. With this unMaze, it can be upgraded CSOC's HMM level from initial level to basic level. CSOC with unMaze do threat hunting process not only detecting existing cyber equipment post-actively, but also proactively detecting cyber threat by fusing and analyzing cyber asset data and threat intelligence.
이 연구에서는 사이버 위협을 평가할 시 복합적인 요소들을 고려한 위협 수준의 정량적 평가방안을 제안하였다. 제안된 평가방안은 공격방법과 행위자, 위협유형에 따른 강도, 근접성의 4가지 사이버 위협 요소를 기반으로 퍼지이론을 사용하여 사이버 위협 수준을 정량화하였다. 본 연구를 통해 제시된 사이버 위협 수준 평가는 언어로 표현된 위협 정보를 정량화된 데이터로 제시해 조직이 위협의 수준을 정확하게 평가하고 판단할 수 있다.
ICT 기술의 혁신적인 발전에 따라 해커의 해킹 수법도 정교하고 지능적인 해킹기법으로 진화하고 있다. 이러한 사이버 위협에 대응하기 위한 위협탐지 연구는 주로 해킹 피해 조사분석을 통해 수동적인 방법으로 진행되었으나, 최근에는 사이버 위협정보 수집과 분석의 중요성이 높아지고 있다. 봇 형태의 자동화 프로그램은 위협정보를 수집하거나 위협을 탐지하기 위해 홈페이지를 방문하여 악성코드를 추출하는 다소 능동적인 방법이다. 그러나 이러한 방법도 이미 악성코드가 유포되어 해킹 피해를 받고 있거나, 해킹을 당한 이후에 식별하는 방법이기 때문에 해킹 피해를 예방할 수 없는 한계점이 있다. 따라서, 이러한 한계점을 극복하기 위해 사이버 거점을 식별, 관리하면서 위협정보를 획득 및 분석하여 실질적인 위협을 탐지하는 모델을 제안한다. 이 모델은 방화벽 등의 경계선 외부에서 위협정보를 수집하거나 위협을 탐지하는 적극적이고 능동적인 방법이다. 사이버 거점을 활용하여 위협을 탐지하는 모델을 설계하고 국방 환경에서 유효성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.