• Title/Summary/Keyword: IR-sensor

Search Result 432, Processing Time 0.025 seconds

Characteristic Estimation of the Formation and Etching of PZT Thin Films for Pyroelectric IR Sensor Application (초전형 적외선 센서 제작을 위한 PZT박막 형성 및 식각 특성 평가)

  • Park, Y.K.;Ju, B.K.;Jeon, H.S.;Yoon, Y.S.;Oh, Y.J.;Lee, Y.H.;Suh, S.H.;Oh, M.H.;Kim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3304-3306
    • /
    • 1999
  • In this study, we used the sputtering method with single target to obtain the thick and uniform PZT($PbZrTiO_3$) films for micromached IR sensor application. Then, we investigated the etching characteristics and conditions which is necessary process to fabricate the IR sensor. We tested the C-axis orientation and P-E loop of the deposited PZT films with the XRD and RT66A, respectively. Also we investigated the surface of the films by the AFM and SEM analysis.

  • PDF

A Study on the Development of Noncontact Soldering Device of PV Cells Using Infrared Lamp (적외선 램프를 이용한 비접촉식 태양전지셀 솔더링 장치 개발에 관한 연구)

  • Lho, Tae-Jung;Kim, Seon-Jin;Park, Min-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • The reflector of infrared lamp is designed to the optimal circular shape through the analyses of lumination distributions with a triangular, rectangular and circular configurations of infrared lamps respectively by using Photopia. PLC is used to compare and amplify the difference between soldering temperature profile and feedback value. It is fed to IR lamp controller which adjusts the soldering temperature of PV cell. The soldering temperature measured using an infrared temperature sensor is then fed back to the PLC. The closed control loop of soldering temperature on a PV cell is implemented. The noncontact soldering device of PV cells using infrared lamp which is easily operated by HMI operation panel and controlled robustly by PLC and IR lamp controller is developed.

Localization System for Mobile Robot Using Electric Compass and Tracking IR Light Source (전자 나침반과 적외선 광원 추적을 이용한 이동로봇용 위치 인식 시스템)

  • Son, Chang-Woo;Lee, Seung-Heui;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.767-773
    • /
    • 2008
  • This paper presents a localization system based on the use of electric compass and tracking IR light source. Digital RGB(Red, Green, Blue)signal of digital CMOS Camera is sent to CPLD which converts the color image to binary image at 30 frames per second. CMOS camera has IR filter and UV filter in front of CMOS cell. The filters cut off above 720nm light source. Binary output data of CPLD is sent to DSP that rapidly tracks the IR light source by moving Camera tilt DC motor. At a robot toward north, electric compass signals and IR light source angles which are used for calculating the data of the location system. Because geomagnetic field is linear in local position, this location system is possible. Finally, it is shown that position error is within ${\pm}1.3cm$ in this system.

An Energy Consumption Model for Time Hopping IR-UWB Wireless Sensor Networks

  • Hoque, M.E.;Khan, M.A.;Parvez, A.Al;An, Xizhi;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.316-324
    • /
    • 2007
  • In this paper we proposed an energy consumption model for IR-UWB wireless sensor networks. The model takes the advantages of PHY-MAC cross layer design, and we used slotted and un-slotted sleeping protocols to compare the energy consumption. We addressed different system design issues that are responsible to energy consumption and proposed an optimum model for the system design. We expect the slotted sleeping will consume less energy for bursty load than that of the un-slotted one. But if we consider latency, the un-slotted sleeping model performs better than the slotted sleeping case.

The Fabrication and Characteristics of the Pyroelectric IR Sensor using P(VDF/TrFE) Thin Films Fabricated by the Spin Coating Technique

  • Kwon, Sung-Yeol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.225-228
    • /
    • 2002
  • The pyroelectric sensor of P(VDF/TrFE) film as sensing materials has been fabricated and evaluated with another commercial pyroelectric sensor using ceramic materials for sensing, The device was mounted in TO-5 housing to detect infrared light of a 5.5~14 ${\mu}{\textrm}{m}$ wavelength. The NEP(noise equivalent power) and specific detectivity D* of the device were 2.13$\times$10$^{-8}$ W and 9.37 10$^{6}$ cm/W under emission energy of 13 ㎼/$\textrm{cm}^2$, respectively.

A study on MicroCantilever Deflection for the Infrared Image Sensor using Bimetal Structure (바이메탈형 적외선 이미지 센서 제작과 칸틸레버 변위에 관한 고찰)

  • Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.34-38
    • /
    • 2005
  • This is a widespread requirement for low cost lightweight thermal imaging sensors for both military and civilian applications. Today, a large number of uncooled infrared detector developments are under progress due to the availability of silicon technology that enables realization of low cost IR sensor. System prices are continuing to drop, and swelling production volume will soon drive process substantially lower. The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple Structurefor developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. This paper reports a micromachined silicon uncooled thermal imager intended for applications in automated process control. This paper presents the design, fabrication, and the behavior of cantilever for thermomechanical sensing.

  • PDF

Development of an Automatic Irrigation Control System in Protected Horticulture (시설원예에 있어서 물관리 지동화 시스템 개발)

  • 김경수;이기명;장익주
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.61-71
    • /
    • 1992
  • This study is performed to develop an automatic irrigation control of system for effective water management in greenhouse. The automatic irrigation control system is composed of an IR-RED optical sensor in tensiometer and an One-chip micro controller. The following results are obtained : 1. A practical IR-RED optical sensor in tensiometer, which shows the starting point of irrigation, was developed. 2. The automatic irrigation system with the optical sensor and One-chip micro controller was developed and also designed to be able to combine with the control system for temperature, curtain opening, etc. 3. A multiple irrigation control system for several greenhouses were suggested. 4. The results of the system test with the driving program for automatic water management were excellent.

  • PDF

Reduced Graphene Oxide Field-Effect Transistor for Temperature and Infrared Sensing

  • Trung, Tran Quang;Tien, Nguyen Thanh;Kim, Do-Il;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.552-552
    • /
    • 2012
  • We fabricated reduced graphene oxide field-effect transistor (RGO-FET) on glass for highly sensitive temperature and IR detection. The device has the channels of RGO responsive to physical stimuli such as temperature and IR. The RGO sensing layers are fabricated from exfoliated graphene oxide sheets that are deposited to form a thin continuous network by electrostatic assembly. These graphene oxide networks are reduced toward reduce graphene oxide by exposure to a hydrazine hydrate vapor. To improve performance and eliminate interferences from oxygen and water vapor absorption to electrical properties of RGO-FET, the sensor devices were encapsulated by the tetratetracontane layer after annealing treatment. The device with encapsulation layer showed lower hysteresis, improved stability, and better repeatability. The temperature response of RGO-FET is examined by measuring changing the temperature, the device exhibited the high sensitivity and repeatability even with the temperature interval of 1 K. We also demonstrated that our devices have capability of IR sensing.

  • PDF

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan;Luu, Tran Le
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.324-334
    • /
    • 2020
  • Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.