• Title/Summary/Keyword: IR-heater

Search Result 41, Processing Time 0.028 seconds

Design of Rework Device using Multi-wave IR-heater (다파장 IR-heater를 이용한 재작업 장치 설계)

  • Cho, Do-Hyeoun
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • This research is the result for studding about the IR Rework station which is using a multi-wave IR-heater for soldering and de-soldering on the substrate such as PCB. This IR repair and reflow system is increasing the temperature on the target area under stable temperature control following setting point melting point of solder and lead free solder using IR-heater. So this system is not giving any therrna1 damage on the target PCB and components even closed components. The soldering and de-soldering quality is evaluated through the actual test.

Fundamental Study for Development of Pre-Heater for Warm In-Place Recycling in Korea (국내 현장중온재생공법의 프리히터 개발을 위한 기초연구)

  • Kim, Dae-Hun;Kim, Seung-Hoon;Kwon, Soo-Ahn;Kim, Yongjoo;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.31-37
    • /
    • 2015
  • PURPOSES : To design a pre-heater for warm in-place recycling equipment, three different heating systems were evaluated to determine their thermal efficiency. METHODS: In this study, a $30cm{\times}30cm{\times}15cm$ wheel-tracking specimen was used to measure the inner temperature as a function of the heating system. The inner temperature of the specimen was measured with a data logger at the surface, and at depths of 1cm, 2cm, 3cm, 4cm, and 5cm. To evaluate the thermal efficiency, the researchers used three different types of equipment, namely, IR, a heating wire, and a gas burner. RESULTS: The IR heating system exhibits a higher level of performance than the others to achieve the target temperature at a depth of 5cm in the specimen. The gas burner system was capable of heating the surface to a temperature of up to $600^{\circ}C$. The other types, however, cannot heat the surface up to 600. The thermal efficiencies were measured based on the laboratory conditions. CONCLUSIONS: To find the most effective system for application to the development of a pre-heater for warm in-place recycling, various systems (IR, heating wire, gas burner) were examined in the laboratory. As a result, it was found that the hot plate of a gas burner system provides the highest temperature at the surface of the asphalt but, of all the systems, the IR system provides the best internal temperature increase rate. Furthermore, a gas burner can age the asphalt binder of the surface layer as a result of the high temperature. However, the gas burner cannot attain the target temperature at 5cm. The IR system, on the other hand, is effective at increasing the internal temperature of asphalt.

Experimental and Numerical Study of Thermal Properties about various forms of Micro-heater (다양한 형상을 갖는 마이크로 히터의 열특성에 관한 실험 및 전산해석적 연구)

  • Kim, Jin-Woo;Kim, Jae-Choon;Lee, Jun-Yub;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1957-1962
    • /
    • 2008
  • As a field of MEMS, micro-heater fabricated by Au is being introduced and developed in recent years. Previous studies about thermal properties of various forms of micro-heater were not sufficient. In this work, numerical and experimental analysis of the heat generation and the temperature distribution of micro-heater packages for 8 different geometric cases were studied. We fabricated a micro-heater package with silicon wafer, on which Cr/Au layer was laminated before 8 geometric forms of micro-heater were patterned. In each cases, temperature distribution was measured with IR thermal camera. According to the experimental results, which show a good agreement with the results analyzed by CFD, it was found that at 0.5W, the temperature of micro-heater chip which contained $20000{\mu}m$-long, serpentine shaped micro-heater was elevated to a relatively high temperature of $78^{\circ}C$ Consequently, we proposed a geometry of micro-heater which has effective thermal characteristics.

  • PDF

Sn-3.5Ag 솔더를 이용한 페리퍼럴 어레이 플립칩의 열 성능 분석

  • Lee Taek Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.270-277
    • /
    • 2003
  • Thermal performance of flip chip bonding with Sn-3.5Ag solder ball was studied. The temperature distribution was measured with IR(InfraRed) camera of 25 urn resolution. The measurement shows that most of the samples had much higher maximum temperature than average temperature. With central heater and 2.5 (W), the difference between maximum and average temperature is over $80^{\circ}C$. The distribution was influenced by the location of heater, the distance from heater to flip chip bonding, and the passivation opening of solder bumps. To reduce the maximum temperature, the bigger passivation opening, the smaller chip size, and the closer location of heater to flip chip bumps are preferrable.

  • PDF

Micro Heater Trimming using UV Laser (UV레이저를 이용한 마이크로 히터 트리밍)

  • Yoo, Seungryeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.36-40
    • /
    • 2017
  • In this paper, a new method of laser trimming of thick film heater is studied. Various laser waves (IR, Green, UV) are used to ablation the heater and the process parameters are also presented. For given initial printed resisters, the cutting length should be prepared to obtain the target resister value in advance. Therefore, the cutting model is very important. The well-known model was tested and proven that it is valid only within a certain range of cutting length. A new model is proposed for a wide range of resister laser trimming. The cutting lengths and resister variation was obtained and formulated. To verify the presented method, the cutting lengths of each resister are calculated for various target resister value and laser trimming using UV is conducted.

  • PDF

Numerical Investigation of the Effect of IR Heating on Drying Mechanism in a Tumble Dryer (열복사를 적용한 드럼 건조기의 건조 메커니즘 분석 및 성능 예측에 관한 연구)

  • Choi, Chul-Jin;Jang, Jung-Hyun;Kim, Chong-Min;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • A two-dimensional mathematical model was developed to predict the temperature and moisture-content profiles of a tumble dryer during infrared drying. The model is based on the movements of liquid water and moisture in the object and on the fluid and heat transfer in the drying air. The model was solved by the finite volume analysis for the fluid, temperature, and radiation intensity fields. After deriving the governing equations and developing the two-dimensional tumble dryer models, numerical investigations were carried out to examine the effects of various parameters such as the heater temperature and the heating patterns on the drying mechanism of the tumble dryer. All the results show that the drying time can be reduced by using the IR heater.

Analytical Investigation of In-direct Heater to Simulate Space Thermal Environment for Thermal Vacuum Test (열진공 시험용 비접촉식 우주 열환경 모사 장치의 해석적 검토)

  • Baek, Cheul-Woo;Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.178-183
    • /
    • 2012
  • To simulate space thermal environment in thermal vacuum test, direct or in-direct heater has been applied on the radiator. Both of them, direct heater attached on the radiator and indirect heater with a distance from the radiator, simulate the heat fluxes from the Sun radiation, the Earth IR and Albedo. They also supply the heat fluxes to the radiator of spacecraft to achieve the target temperature according to thermal test conditions. In general, indirect heater is used when the heater is not allowed to attach on the radiator directly due to constraints of coating property or contamination. For in-direct heater design, it is needed to estimate the heat power to make the extreme test conditions and minimize the interference with heat exchange of radiator and shroud. In this study, optimized thermal design of in-direct heater is proposed and investigated by commercial S/W SINDA. The effective values of design factors are also derived.

Thermal Characteristics of Microheater for Gas Sensors (가스센서용 마이크로 히터의 발열특성)

  • Choi, Woo-Chang;Choi, Hyek-Hwan;Kwon, Tae-Ha;Lee, Myong-Kyo
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.356-363
    • /
    • 1998
  • Using the results analyzed by FEM(Finite Element Method). the microheaters with the stress-balanced $Si_3N_4$(150 nm)/$SiO_2$(300 nm)/$Si_3N_4$(150 nm) diaphragms were fabricated by silicon micromachining techniques. Pt was used as microheater materials. Pt temperature sensor was fabricated to measure the temperature of microheaters. Resistance of temperature sensor and power dissipation of microheater were measured and calculated at the various temperatures. The thermal distribution of heater was examined by a IR thermoviewer. Measured and simulated results are compared and analyzed. The temperature coefficient of resistance of heater was about $0.00379/^{\circ}C$. Pt heater showed the power dissipation of about 51 mW at $300^{\circ}C$ and a uniform thermal distribution on the surface.

  • PDF