• Title/Summary/Keyword: IPv6 for Mobility

Search Result 219, Processing Time 0.027 seconds

A Comparative Analysis on the Handover Latencies of IPv6 Mobility Support Protocols (IPv6 이동성 지원 프로토콜들의 핸드오버 지연시간에 대한 비교 분석)

  • Kong, Ki-Sik
    • Journal of Digital Contents Society
    • /
    • v.11 no.3
    • /
    • pp.341-348
    • /
    • 2010
  • Unlike host-based IPv6 mobility support protocols such as Mobile IPv6 (MIPv6), Hierarchical Mobile IPv6 (HMIPv6), and Fast handover for Mobile IPv6 (FMIPv6), Proxy Mobile IPv6 (PMIPv6) is expected to accelerate the real deployment of IPv6 mobility support protocol by using only collaborative operations between the network entities without mobile node (MN) being involved. In this paper, we analyze and compare the handover latency of network-based IPv6 mobility support protocol (i.e., PMIPv6) with the representative host-based IPv6 mobility support protocols such as MIPv6, HMIPv6, and FMIPv6. Analytical results show that the handover latency of PMIPv6 is considerably lower than those of MIPv6 and HMIPv6, and the handover latency of PMIPv6 becomes lower than that of FMIPv6 in case the wireless link delay is greater than the delay between mobile access gateway (MAG) and local mobility anchor (LMA).

A Next-generation Mobility Management Scheme for an IPv4/IPv6 Dual-stack Terminal (듀얼스택 단말을 지원하는 차세대 이동성 지원 기술 연구)

  • Lee, Kyoung-Hee;Lee, Sung-Kuen;Lee, Hyun-Woo;Han, Youn-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1182-1191
    • /
    • 2011
  • In this paper, we propose a network-based IP mobility management scheme, called Access Independent Mobile Service with IPv4/IPv6 Dual Stack (AIMS-DS), which can provide high-quality multimedia services to IPv4/IPv6 dual-stack mobile nodes (MNs) without any interruption over various wireless/wired access networks. The proposed scheme provides an MN with a fast and reliable mobility service among heterogeneous wireless access networks through the network-based control, the complete separation method of control and data plane, the cross-layer (layer2 and layer3) interworking method for handover control acceleration, etc, In addition, the proposed AIMS-DS can provide seamless mobility service to an MN under the environments of IPv4/IPv6 coexisting networks through the home address mobility support and transport network support. Through performance evaluation with computer simulations, we have shown the superiority of the proposed AIMS-DS in terms of handover latency, packet 1085 and packet delivery latency.

LC-GM2: Low-Cost Global Mobility Management Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 저비용의 글로벌 이동성관리 기법)

  • Kim, Jongyoun;Park, Jongsun;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.193-204
    • /
    • 2012
  • This paper specifies a low-cost global mobility management architecture and protocol procedure called LC-$GM^2$, which is based on Proxy Mobile IPv6. In LC-$GM^2$, mobility management is performed by the network entity. The benefit is the elimination of the wireless link data delivery tunnel overhead between a mobile node and the access router. To compare with the well-known Hierarchical Mobile IPv6 mobility management protocol and GPMIP, the location update, packet delivery, and total cost functions generated by a mobile node during its average domain residence time are formulated for each protocol based on Fluid-flow mobility model. Then, the impacts of various system parameters on the cost functions are analyzed. The analytical results indicate that the proposed global mobility management protocol can guarantee lower total costs.

Hardware-Based Mobile IPv6 Implementation (하드웨어 기반 모바일 IPv6의 구현)

  • Kim, Hye-Ran;Mun, Ju-Hyoung;Kim, Won-Jung;Chu, Ha-Neul;Jhee, Suh-Young;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.40-52
    • /
    • 2007
  • Mobile IP allows mobile end-systems to maintain on-going connections while moving to other links. Based on the Internet Protocol Version 6 (IPv6), mobile IPv6 provides a set of new mobility functions such as route optimization in addition to the functions in mobile IPv4. This paper describes the hardware-based mobile IPv6 implementation which provides all the mobility functionalities in hardware. The hardware-based mobile IPv6 provides faster mobility support than software-based implementation as well as it reduces the number of packet losses which can be caused during the movement. In end-systems equipped with hardware-based mobility support, the CPU can concentrate more on running application programs without wasting its effort for mobility support, and hence it is expected the overall performance improvement.

Performance analysis of Hierarchical Mobile IPv6 depending on the paging size (페이징 영역크기에 따른 계층적 이동 IPv6 의 성능분석)

  • 정계갑;이상욱;김준년
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.964-974
    • /
    • 2003
  • With increasing use of a personal mobile computer. the Mobile IPv6 is one of the main protocols that support mobility and complies with IPv6 specification. Similar to the mobile IPv6, the mobile IPv6 also has limitations on fast moving condition. The Hierarchical Mobile IPv6 is a solution that overcomes these limitations. The Hierarchical Mobile IPv6 is a micro mobility protocol that supports fast mobile IP handover and reduces signaling overhead with Mobility Anchor Point(MAP). But until now no paging method is applied to the Hierarchical Mobile IPv6 to reduce unnecessary signaling overhead and power consumption of mobile nodes. So, the paging mechanism for the Hierarchical Mobile IPv6 is proposed in this paper. the mechanism is implemented by making use of the destination option header and extension function and the last location algorithm. The results show that the Hierarchical Mobile IPv6 with the paging ability reduces the traffic of mobile networks by removing unnecessary binding update packet generated whenever handover takes place. Also, the larger the paging size is. the less the number of BU(Binding Update) massage generated.

A Mobility Header Conversion Mechanism for Mobile IPv4 and Mobile IPv6 Communications (Mobile IPv4/Mobile IPv6 통신을 위한 모바일 헤더 변환 메커니즘)

  • Kim, Dae-Sun;Hong, Choong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.61-70
    • /
    • 2007
  • An interworking translator for IPv6 and IPv4 services can be defined as an intermediate component between a native IPv4 host and a native IPv6 host to enable direct communication between them without requiring any modifications to the hosts. But if the host is a mobile node, triangle routing problem occurs, since Mobile IPv4 allows mobile node to roam transparently in my network. In this situation, mobile node must notify transfer information to its own home agent and correspondent node in IPv6 network. But current NAT-PT does not permit mobility header translation. Therefore, NAT-PT does not support efficient communication between Mobile IPv4 and Mobile IPv6. In this paper, we propose a mobility header conversion mechanism to resolve the triangle routing problem between Mobile IPv4 and Mobile IPv6.

Performance Analysis of Mobility Support Protocols for IPv6 over Wireless LAN (IEEE 802.11 무선랜 환경에서의 이동성 지원 IPv6프로토콜의 성능분석)

  • Hwang Seung-Hee;Han Youn-Hee;Hwang Chong-Sun
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.391-403
    • /
    • 2005
  • Several nv6 mobility support protocols for mobile Internet services are proposed in IETP : Mobile Ipv6, Hierarchical Mobile Ipv6, and Fast Handovers over Mobile Ipv6. Recently, IEEE 802.11 network has also been widely deployed in public areas for mobile Internet services. In the near future, IPv6 mobility support over IEEE 802.11 network is expected to be a key function to actualize the All If-based mobile various services. For appropriate application of these protocols, the IPv6 mobility support protocols should be analyzed according to their characteristics in terms of signaling, handover latency, lost packets, and required buffer sire as well as the impact of lower layer such as IEEE 802.11 network. In this paper, we analyze the performance of the protocols over IEEE 802.11 network. We define a packet-level traffic model, a network system model, and a mobility model. From these models, we construct a framework for the performance analysis. We also make cost functions to formalize each protocol's performance. Lastly, we analyze the effect of varying parameters used to show diverse numerical results, and compare with each other. From the analysis results, it is concluded that each Protocol has contrary or contrastive advantages with other Protocols, so there is no protocol that holds a dominant position.

Performance Evaluation of Layered Mobility Management Schemes for Wireless Mobile Internet (무선 이동 인터넷에서 계층 이동성 관리기법의 성능평가)

  • Lee, Yong-Jin;Ryu, Gab-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.1
    • /
    • pp.129-136
    • /
    • 2011
  • The aim of this study is to present the handover procedures and the performance comparisons of layered mobility management schemes for wireless mobile Internet. To investigate efficient mobility management schemes providing seamless information services in a mobile environment, this paper provided the detailed discussions of existing network layered mobility management scheme, including Mobile IPv4, Mobile IPv6, and new transport layer mobility management scheme, stream control transmission protocol (SCTP) based mobility architecture (SMA). Network simulator-2 (ns-2) was used to compare the performance between Mobile IPv6 and SMA in the wireless mobile Internet environment. Simulation results show that for typical network configuration and parameters, SMA has a lower handover latency, lower packet loss rate, and higher throughput than Mobile IPv6.

  • PDF

Performance Analysis of Fast Handover Scheme Based on Secure Smart Mobility in PMIPv6 Networks (프록시 모바일 IPv6 네트워크에서 안전한 스마트 이동성에 기반한 빠른 핸드오버 기법의 성능분석)

  • Yoon, KyoungWon;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.121-133
    • /
    • 2013
  • Defect-free transfer service on the Next-generation wireless network extensive roaming mobile node (MN) to provide efficient mobility management has become very important. MIPv6(Mobility IPv6) is one of mobility management scheme proposed by IETF(Internet Engineering Task Force), and IPv6-based mobility management techniques have been developed in various forms. One of each management techniques, IPv6-based mobility management techniques for PMIPv6 (MIPv6) system to improve the performance of a variety of F-PMIPv6 (Fast Handover for Proxy MIPv6) is proposed. However, the F-PMIPv6 is cannot be excellent than PMIPv6 in all scenarios. Therefor, to select a proper mobility management scheme between PMIPv6 and F-PMIPv6 becomes an interesting issue, for its potenrials in enhancing the capacity and scalability of the system. In this paper, we develop an analytical model to analyze the applicability of PMIPv6 and F-PMIPv6. Based on this model, we design an Secure Smart Mobility Support(SSM) scheme that selects the better alternative between PMIPv6 and F-PMIPv6 for a user according to its changing mobility and service characteristics. When F-PMIPv6 is adopted, SSM chooses the best mobility anchor point and regional size to optimize the system performance. Numerical results illustrate the impact of some key parameters on the applicability of PMIPv6 and F-PMIPv6. Finally, SSM has proven even better result than PMIPv6 and F-PMIPv6.

Mobility Management Scheme based on User Mobility QoS and Security-Effective Network in Heterogeneous Mobile Networks (이종의 모바일 네트워크에서 사용자 이동성 QoS와 보안효과적인 네트워크 기반의 이동성관리 기법)

  • Lee, Hyeungwoo;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.87-97
    • /
    • 2015
  • To support the efficient mobility MIPv6v, FMIPv6, HMIPv6 and host-based mobility management protocols have been developed. AAAC (Authentication, Authorization, Accounting and Charging) system is applied in this paper analyzed the the existing IPv6 PMIPv6, FPMIPv6 network security effective and IPv6 MMP (Mobile Management Protocol) Features and performance analysis is performed. And IPv6 MMP seamless transfer performance in terms of packet loss probability, will be analyzed. That can be efficiently used as a method for the integration of QoS and mobility so that you can manage and control the resources presented QoSB usage. Results of evaluation results showed a better overall fast handover structure of mobility management techniques. PMIPv6 and FPMIPv6 in many respects the most efficient structure that can be specifically, a fast handover of the structure of the network-based mobility management scheme showed the best results.