• Title/Summary/Keyword: IPM 전동기

Search Result 102, Processing Time 0.018 seconds

Thermal Network Analysis of Interior Permanent Magnet Machine (매입형 영구자석 전동기의 열 등가 회로 해석)

  • Lim, Jae-Won;Seo, Jang-Ho;Lee, Sang-Yub;Jung, Hyun-Kyo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.527-532
    • /
    • 2009
  • Recently, Interior Permanent Magnet Machine(IPM) is widely used for traction motor in the high speed train. Due to the high efficiency and high power density of the IPM, it has lots of heat sources such as iron loss and copper loss. These heat sources can cause the demagnetization of permanent magnet, losses in output power and even irreversible defect of the IPM. To prevent the power loss caused by heat sources, the accurate thermal analysis has to be carried out. For the thermal analysis of the IPM, the thermal network is designed for this traction motor. The thermal analysis has executed at rated speed operation. The result of thermal network analysis can be used for the IPM design process.

  • PDF

Design and Analysis of Characteristics of Interior Permanent Magnet BLDC Motor That Consider Shape-Ratio of Permanent Magnet (영구자석 형상비를 고려한 영구자석 매입형 BLDC 전동기 설계 및 특성해석)

  • Yun Keun-Young;Rhyu Se-Hyun;Yang Byoung-Yull;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Now a day, owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) BLOC with high efficiency and high power in electric motion vehicle is increasing. IPM BLDC motor has permanent magnets in the rotor. Because it has two different flux paths, magnetic reluctance differences are generated in d-axis and q-axis. As the result of the inductance differences that are generated by the saliency(magnetic reluctance differences) in the rotor, the motor has structure advantage that has the additional reluctance torque except a magnet torque and because magnet is situated inside the rotor, the mechanical structure is strong. Therefore IPM BLDC motor makes possible to have high speed and high power. This paper presents a design and characteristics analysis of IPM BLDC motor for electric vehicle. To design IPM BLDC motor, surface mounted permanent magnet(SPM) BLDC motor is used as the initial design model. According to the shape-ratio() of permanent magnet, the characteristic of IPM BLDC motor is analyzed by Finite element method (FEM). Characteristics analysis results of the designed motor are compared with the experimental results.

The Design of Radial Magnetic Force Equilibrium for Reduction of Vibration and Noise in IPM Type BLDC Motor (IPM type BLDC 전동기의 진동 및 소음 저감을 위한 가진력 평형화 설계)

  • Jeong, Tae-Seok;Cho, Gyu-Won;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1535-1540
    • /
    • 2013
  • In this paper, the Radial Magnetic Force(RMF) and cogging torque which cause vibration and noise in IPM type BLDC motor were analyzed. The cogging torque and RMF cause electromagnetic vibration. So, a notch was installed for the equilibrium of RMF and cogging torque reduction. The notch was analyzed by using a Fourier Series for the energy distribution of the air-gap. The equilibrium of RMF and the reduction of cogging torque were performed by a Design Of Experiment(DOE) with the notch. Also, operating characteristics and efficiency were analyzed and compared.

Flux Barrier Design for Reducing Torque Ripple in IPM type BLDC motor Using the Taguchi Methods (다구찌 기법을 이용한 IPM tape BLDC 전동기의 토크리플 저감을 위한 자속장벽설계)

  • Park, Hyun-Kag;Yang, Byoung-Yull;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.158-160
    • /
    • 2006
  • The structure of interior permanent magnet type brushless DC motor (IPM type BLDC motor) has high saliency ratios that produce additional reluctance torque. But this structure has a significant cogging torque that may cause acoustic noise and vibration. In this paper describes an optimization of flux barrier in order to reduce cogging torque and torque ripple in IPM type BLDC motor using the Taguchi methods. The optimal design consider- ed noises such as manufacturing tolerances of permanent magnet size. So, optimal design ensures that torque performance is insensitive to noise.

  • PDF

Design and Analysis of Characteristics of IPM type BLDC Motor for Low Voltage, High Current (저전압 대전류용 IPM type BLDC 전동기 설계 및 특성해석)

  • Yun, Keun-Young;Rhyu, Se-Hyun;Yang, Byoung-Yull;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.77-79
    • /
    • 2004
  • This paper presents a design and characteristics analysis of interior permanent magnet (IPM) type BLDC motor for electric vehicle. In order to design of IPM type BLDC motor, surface mounted permanent magnet(SPM) type BLDC motor is used as the initial design model. According to the size of permanent magnet, the steady state characteristics is analysized by equivalent magnetic circuit method. The characteristics analysis results of the designed motor is compared with the experimental results.

  • PDF

The Design and Analysis of a Permanent Magnet Reluctance Motor with High Efficiency (고효율 영구자석 릴럭턴스 전동기의 설계 및 해석)

  • Zhang, Peng;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.775-776
    • /
    • 2006
  • Based on the requirement of high power and efficiency in automobile systems, this paper describes an investigation for the optimum design of a permanent magnet reluctance motor(PRM), and then the characteristics of this kind of motor is compared with that of a interior permanent magnet(IPM) motor. The IPM of 4-pole with 6-slot is redesigned into a PRM, which has the same stator and different rotor structure with IPM. Through finite element analysis(FEA) and equivalent circuit method, the PRM has higher salient ratio, higher efficiency at high speed, and lower iron loss compared with IPM.

  • PDF

The Design of Radial Magnetic Force Equilibrium for Reduction of Vibration in IPM Type BLDC Motor (진동 저감을 위한 IPM type BLDC 전동기의 가진력 평형화 설계)

  • Lee, Gyeong-Deuk;Lee, Won-Sik;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.298-303
    • /
    • 2016
  • In this paper, the vibration source of IPM type BLDC motor was analyzed by finite element method. The main causes of the electrical vibration were RMF(Radial magnetic force) and cogging torque. It was designed model of minimized cogging torque and RMF equilibrium. Design models were selected the optimum model using the design of experiment method. And, the vibration experiment was carried out through prototype machine of each model. Finally, the experimental results were compared with the analysis ones.

Assistant Model For Considering Slot-Opening Effect on No-load Air-gap Flux Density Distribution in Interior-type Permanent Magnet Motor (매입형 영구자석 전동기에서 무부하시 공극 자속밀도 분포에 대한 Slot-Opening Effect를 고려한 보조 모델)

  • Fang, Liang;Kim, Do-Jin;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.759-765
    • /
    • 2011
  • This paper proposes an effective assistant model for considering the stator slot-opening effect on air gap flux density distribution in conventional interior-type permanent magnet (IPM) motor. Different from the conventional slot-opening effect analysis in surface-type PM (SPM) motor, a composite effect of slot-opening uniquely existing in IPM motor, which additionally causes enhancement of air gap flux density due to magnet flux path distortion in iron core between the buried PM and rotor surface. This phenomenon is represented by a proposed assistant model, which simply deals with this additional effect by modifying magnetic pole-arc using an effective method. The validity of this proposed analytical model is applied to predict the air gap flux density distribution in an IPM motor model and confirmed by finite element method (FEM).

Reducing Cogging Torque by Flux-Barriers in Interior Permanent Magnet BLDC Motor (회전자 자속장벽 설계에 의한 영구자석 매입형 BLDC 전동기 코깅 토오크 저감 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.491-497
    • /
    • 2006
  • For high efficiency and easy speed control of brushless DC (BLDC) motor, the demand of BLDC motor is increasing. Especially demand of interior permanent magnet (IPM) BLDC with high efficiency and high power in electric motion vehicle is increasing. However, IPM BLDC basically has a high cogging torque that results from the interaction of permanent magnet magnetomotive force (MMF) harmonics and air-gap permeance harmonics due to slotting. This cogging torque generates vibration and acoustic noises during the driving of motor. Thus reduction of the cogging torque has to be considered in IPM BLDC motor design by analytical methods. This paper proposes the cogging torque reduction method for IPM BLDC motor. For reduction of cogging torque of IPM BLDC motor, this paper describes new technique of the flux barriers design. The proposed method uses sinusoidal form of flux density to reduce the cogging torque. To make the sinusoidal air-gap flux density, flux barriers are applied in the rotor and flux barriers that installed in the rotor produce the sinusoidal form of flux density. Changing the number of flux barrier, the cogging torque is analyzed by finite element method. Also characteristics of designed model by the proposed method are analyzed by finite element method.

Modeling of Switched Reluctance Motor (SRM) Drive and Control System using Rotor Position Information Sensor (회전자 위치정보 센서를 이용한 Switched Reluctance Motor (SRM)의 구동 및 제어 시스템 Modeling)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In recent years, permanent magnets such as IPM (Interior Permanent Magnet) motors or SPM (Surface Permanent Magnet) motors that can obtain high efficiency and power density by inserting rare earth permanent magnets into the rotor are used. Research on the used electric motor is being actively conducted. Since it uses a permanent magnet, it has the advantage of high efficiency and high power density compared to reluctance motors and induction motors, but by inserting a permanent magnet into the rotor, it operates at high speeds and decreases reliability due to demagnetization of the permanent magnets, and increases the cost of rare earth metals. In this paper, in accordance with the development of future technology that can replace rare-earth permanent magnet motors and technological preoccupation of rare-earth reduction type motors and de-rare-earth motors, switched reluctance motors that do not require permanent magnets (Switched Reluvtance Motors) Motor, SRM) to drive driving control. Using the 3-phase SRM library provided by the PSIM simulation program, we will study the driving and control system modeling of SRM using the rotor position information sensor.