• Title/Summary/Keyword: IPCC Guideline(GL)

Search Result 6, Processing Time 0.025 seconds

Application of 2006 IPCC Guideline to Improve Greenhouse Gas Emission Estimation for Livestock Agriculture (2006 IPCC 가이드라인 축산부문 도입에 따른 온실가스 배출량 계산 개선방안 연구)

  • Ji, Eun-Sook;Yang, Seung-Hak;Cho, Sung-Back;Hwang, Ok-Hwa;Park, Kyu-Hyun
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.75-84
    • /
    • 2012
  • Current estimation of greenhouse gas (GHG) emissions from livestock agriculture in Korea was based on Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (1996 IPCC GL) published in 1996 and emission data were published in National Inventory Report. New guideline book, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC GL), however, was published in 2006. Hence preparation to apply new guideline for the estimation of GHG emission would be necessary. In this study, 1996 IPCC GL and 2006 IPCC GL for livestock agriculture were compared. Estimated GHG emissions based on Tier 1 methods of 1996 IPCC GL and 2006 IPCC GL between 2000 and 2008 were also compared. Estimated GHG emissions based on 2006 IPCC GL were 1.27~1.33 times higher than those based on 1996 IPCC GL. These results were mainly caused by emission factors of each IPCC GL. More researches should be conducted to decrease uncertainties of national GHG inventories.

Analysis of Changing for GHG Emissions and Regional Characteristics on Rice Cultivation by IPCC Guideline Improvements (IPCC 온실가스 산정지침 변화에 따른 농촌지역 벼 재배부문 배출량 및 배출특성 분석)

  • Park, Jinseon;Jeong, Chanhoon;Jeong, Hyuncheol;Kim, Gunyeop;Lee, Jongsik;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.2
    • /
    • pp.75-86
    • /
    • 2017
  • IPCC Guidelines have been updated after the first official announcement to get more precise estimation of GHG emissions. The goal of this study is to evaluate the implications of the IPCC Guidelines improvements including equations of country-specific parameter values for estimating GHG emissions for rice cultivation on the agricultural sector. In addition, we analyze the effects of emission factors associated with organic amendment applications. The results of this study are as follows; (1) the total GHG emissions of rice cultivation based on 1996 IPCC GL are 28% lower than those estimated by 2006 IPCC GL with the same year data; (2) GHGs can be reduced up to 60% through the assumption of organic fertilizer applications; (3) Jeonnam and Chungnam are the worst regions for GHG emissions on rice cultivation and Chungbuk shows the highest reduction rate of GHG emissions, about 40%.

A Study on Greenhouse Gas Inventories for Regional Governments (A Case Study of Jeonbuk Province) (지자체 온실가스 인벤토리 구축연구 - 전라북도 사례)

  • Jang, Nam-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.565-572
    • /
    • 2009
  • Greenhouse gas(GHG) inventories and basic strategies for Jeonbuk regional government were established to reduce greenhouse gas emissions. The method to construct GHG inventories of Jeonbuk followed the 'Revised IPCC 1996 Guidelines'which was used for the 'Third National Communication of the Republic of Korea under UNFCCC'. Korean government could use primary energy consumption for the energy industries section in the national GHG inventories. However, regional governments should use secondary energy consumption (included electricity consumption) for the energy industries section for their GHG inventories because they could not control the emission of energy transformation section. In the result of Jeonbuk GHG inventories in 2006, carbon dioxide($CO_2$) emissions from fuel combustion covered 87.1% of total emissions. Methane($CH_4$), carbon dioxide($CO_2$) from other sections, nitrous oxide($N_2O$) and F-gas(HFCs, PFCs, $SF_6$) accounted for 8.1, 2.2, 1.6 and 1.0% of total emissions, respectively. The sectional emission decreased in the order of the energy(88.0%), agriculture(7.6%), waste(2.3%) and industrial processes(2.1%) section. The energy industries section that contained electricity consumption was the most dominant emission source in the energy section. F-gas consumption, rice cultivation and waste incineration were main emission sources in the industrial processes, agriculture and waste section, respectively. In this study, basic directions of each section were established by the results of Jeonbuk GHG inventories in 2006.

Data Build-up for the Construction of Korean Specific Greenhouse Gas Emission Inventory in Livestock Categories

  • Won, S.G.;Cho, W.S.;Lee, J.E.;Park, K.H.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • Many studies on methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock industries have revealed that livestock production directly contributes to greenhouse gas (GHG) emissions through enteric fermentation and manure management, which causes negative impacts on animal environment sustainability. In the present study, three essential values for GHG emission were measured; i.e., i) maximum $CH_4$ producing capacity at mesophilic temperature ($37^{\circ}C$) from anaerobically stored manure in livestock category ($B_{0,KM}$, Korean livestock manure for $B_0$), ii) $EF_{3(s)}$ value representing an emission factor for direct $N_2O$ emissions from manure management system S in the country, kg $N_2O-N$ kg $N^{-1}$, at mesophilic ($37^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures, and iii) $N_{ex(T)}$ emissions showing annual N excretion for livestock category T, kg N $animal^{-1}$ $yr^{-1}$, from different livestock manure. Static incubation with and without aeration was performed to obtain the $N_2O$ and $CH_4$ emissions from each sample, respectively. Chemical compositions of pre- and post- incubated manure were analyzed. Contents of total solids (% TS) and volatile solid (% VS), and the ratio of carbon to nitrogen (C/N) decrease significantly in all the samples by C-containing biogas generation, whereas moisture content (%) and pH increased after incubation. A big difference of total nitrogen content was not observed in pre- and post-incubation during $CH_4$ and $N_2O$ emissions. $CH_4$ emissions (g $CH_4$ kg VS-1) from all the three manures (sows, layers and Korean cattle) were different and high C/N ratio resulted in high $CH_4$ emission. Similarly, $N_2O$ emission was found to be affected by % VS, pH, and temperature. The $B_{0,KM}$ values for sows, layers, and Korean cattle obtained at $37^{\circ}C$ are 0.0579, 0.0006, and 0.0828 $m^3$ $CH_4$ kg $VS^{-1}$, respectively, which are much less than the default values in IPCC guideline (GL) except the value from Korean cattle. For sows and Korean cattle, $N_{ex(T)}$ values of 7.67 and 28.19 kg N $yr^{-1}$, respectively, are 2.5 fold less than those values in IPCC GL as well. However, $N_{ex(T)}$ value of layers 0.63 kg N $yr^{-1}$ is very similar to the default value of 0.6 kg N $yr^{-1}$ in IPCC GLs for National greenhouse gas inventories for countries such as South Korea/Asia. The $EF_{3(s)}$ value obtained at $37^{\circ}C$ and $55^{\circ}C$ were found to be far less than the default value.

Analysis of Greenhouse Gas Emission and Abatement Potential for the Korean Waste Sector (한국의 폐기물부문의 온실가스 배출량 및 감축잠재량 분석)

  • Chung, Yongjoo;Kim, Hugon
    • Korean Management Science Review
    • /
    • v.33 no.4
    • /
    • pp.17-31
    • /
    • 2016
  • Waste sector has been a target of abatement policies by the most governments, even though its greenhouse gas (GHG) emission is not so high, since it is related to almost of other sectors. This study propose new GHG calculation equations which resolves logical contradiction of IPCC GL (Intergovernmental Panel on Climate Change Guideline) equations by including waste-to-energy effects. According to two GHG calculation equations, GHG emission inventory and BAU by the year 2050 have been computed. And GHG abatement potential and marginal cost for the five abatement policies carefully selected from the previous researches have been calculated for the year 2020. The policy that makes solid fuel like RDF from flammable wastes and uses them as combustion fuel of electricity generations has been found to be the most efficient and effective one among five policies. The cumulative abatement amount when five policies not mutually exclusive are applied sequentially has been reckoned.

Emission Rate of Greenhouse Gases from Bedding Materials of Cowshed Floor: Lab-scale simulation study (우사깔짚에서 발생되는 온실가스 배출량 산정: 모의 실험결과)

  • Cho, Won Sil;Lee, Jin Eui;Park, Kyu Hyun;Kim, Jeong Dae;Ra, Chang Six
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • To know the emission amount of greenhouse gases from bedding materials of cowshed floor, the emission rates of methane ($CH_4$) and nitrous oxide ($N_2O$) gases from a simulated cowshed floor (SCF) with sawdust that manure loading rate into the bedding material could be accurately controlled were assessed in this study. The manure loading rates of Korean beef and Holstein dairy cattle into the SCF of $0.258m^2$ surface area with 10 to 15 cm height sawdust were $1.586kg/m^2/d$ and $3.588kg/m^2/d$, respectively, and those were calculated on the basis of "Standard model for sustainable livestock" and "Data for excretion amount of manure from livestock". All experiments were done in triplicates in three different seasons (May to July, Sep. to Nov., and Feb. to Apr.) using 12 SCFs. The effects of bedding material thickness on $CH_4$ and $N_2O$ emission from SCFs for both Korean beef cattle and Holstein dairy cattle were not statistically significant (p<0.05). Emission amount of $CH_4$ and $N_2O$ per square meter of SCF for Holstein dairy cattle was 7.5 and 1.2 times higher than that of Korean beef cattle, respectively. The yearly $CH_4$ amount per head was 17.7 times higher in Holstein dairy cattle, obtaining 130.4 g/head/year from SCF for Holstein dairy cattle and 7.4 g/head/year from SCF for Korean beef cattle, and $N_2O$ was also 3.8 times higher in Holstein dairy cattle (3,267 g/head/year in Korean beef cattle and 14,719 g/head/year in Holstein dairy cattle). However, the $N_2O$-N per loaded nitrogen into SCF was higher in Korean beef cattle, having 0.2148 and 0.1632 kg $N_2O$-N/kg N in Korean beef cattle and Holstein dairy cattle, respectively, and those values were 3.07 and 2.33 times higher than that of Intergovernmental Panel on Climate Change (IPCC) 2006 guideline (GL) (0.07 kg $N_2O$-N/kg N).