• Title/Summary/Keyword: INVERSION

Search Result 2,302, Processing Time 0.028 seconds

Seismic First Arrival Time Computation in 3D Inhomogeneous Tilted Transversely Isotropic Media (3차원 불균질 횡등방성 매질에 대한 탄성파 초동 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.241-249
    • /
    • 2006
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms commonly used, however, may not give sufficiently precise computational results of traveltime data particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. Considering the complex geology of Korea, we assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution. The performance of the algorithm developed in this study is demonstrated by the comparison of the analytic and numerical solutions for the homogeneous anisotropic earth as well as through the numerical experiment for the two layer model whose anisotropic properties are greatly different each other. We expect that the developed modeling algorithm can be used in the development of processing and inversion schemes of seismic data acquired in strongly anisotropic environment, such as migration, velocity analysis, cross-well tomography and so on.

Measurement of GPR Direct Wave Velocity by f-k Analysis and Determination of Dielectric Property by Dispersive Guided Wave (f-k 분석에 의한 레이다파 속도 측정 및 레이다파의 분산성 가이드 현상을 이용한 지하 물성 계산)

  • Yi, Myeong-Jong;Endres, Anthony L.;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.304-315
    • /
    • 2006
  • We have examined the applicability of f-k analysis to the GPR direct wave measurement for water content to characterize vadose zone condition. When the vadose zone consists of a dry surface layer over wet substratum, we obtained f-k spectra where most of the energy is bounded by the air and dry soil velocities. In this case, dry soil velocity was successfully estimated by using high frequency data. On the other hands, when wet soil overlies dry substratum, the f-k spectra show a contrasting response where most of the energy travels with the velocity bounded by dry and wet soil velocities. In this case, the radar waves are trapped and guided within wet soil layer, exhibiting velocity dispersion. By adopting modal propagation theory, we could formulae a simple inversion code to find two layer's dielectric constants as well as layer thickness. By inverting the velocity dispersion curve obtained from f-k spectra of synthetic modeling data, we could obtain good estimates of dielectric constants of each layer as well as first layer thickness. Moreover, we could obtain more accurate results by including the higher mode data. We expect this method will be useful to get the quantitative property of real subsurface when the field condition is similar.

Verification of Reinforcement with Grouting Materials in a Small Scale Reservoir Dike using Surface and Borehole Electrical Resistivity survey (지표 및 시추공 전기비저항 탐사를 중심으로)

  • Song, Sung-Ho;Yong, Hwan-Ho;Kim, Yang-Bin
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.239-245
    • /
    • 2009
  • To verify the reinforcing effect of grouting materials composed of colloid cement and ordinary portland cement on the water leakage region in a small scale dike, we performed a tubecasing method and applied surface electrical resistivity survey including electrical resistivity tomography (ERT) to find resistivity variation before and after grouting. Hydraulic conductivities after grouting show 10 times lower than those of before grouting. These variation indicates that the cement grout blocks the leakage pathway effectively. As the results of dipole-dipole resistivity survey along the dike, resistivity distribution after grouting did not represent noticeable spatial variation in time. Resistivity monitoring results at the dike with vertical electrical sounding (VES) showed that the region of decreasing apparent resistivity was occupied by the grout after grouting. Predicted resistivities from the inversion of ERT data well matched with results of VES at the same regions. From the ERT using check holes to inspect the effect of grouting, we could find that the ERT is quite effective to identify spatially the grout region in a dike.

Primary Solution Evaluations for Interpreting Electromagnetic Data (전자탐사 자료 해석을 위한 1차장 계산)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Song, Yoon-Ho;Lee, Ki-Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.361-366
    • /
    • 2009
  • Layered-earth Green's functions in electormagnetic (EM) surveys play a key role in modeling the response of exploration targets. They are computed through the Hankel transforms of analytic kernels. Computational precision depends upon the choice of algebraically equivalent forms by which these kemels are expressed. Since three-dimensional (3D) modeling can require a huge number of Green's function evaluations, total computational time can be influenced by computational time for the Hankel transform evaluations. Linear digital filters have proven to be a fast and accurate method of computing these Hankel transforms. In EM modeling for 3D inversion, electric fields are generally evaluated by the secondary field formulation to avoid the singularity problem. In this study, three components of electric fields for five different sources on the surface of homogeneous half-space were derived as primary field solutions. Moreover, reflection coefficients in TE and TM modes were produced to calculate EM responses accurately for a two-layered model having a sea layer. Accurate primary fields should substantially improve accuracy and decrease computation times for Green's function-based problems like MT problems and marine EM surveys.

Smoothing Effect in X-ray Microtomogram and Its Influence on the Physical Property Estimation of Rocks (X선 토모그램의 Smoothing 효과가 암석의 물성 예측에 미치는 영향 분석)

  • Lee, Min-Hui;Keehm, Young-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Physical properties of rocks are strongly dependant on details of pore micro-structures, which can be used for quantifying relations between physical properties of rocks through pore-scale simulation techniques. Recently, high-resolution scan techniques, such as X-ray microtomography and high performance computers make it possible to calculate permeability from pore micro-structures of rocks. We try to extend this simulation methodology to velocity and electrical conductivity. However, the smoothing effect during tomographic inversion creates artifacts in pore micro-structures and causes inaccurate property estimation. To mitigate this artifact, we tried to use sharpening filter and neural network classification techniques. Both methods gave noticeable improvement in pore structure imaging and accurate estimation of permeability and electrical conductivity, which implies that our method effectively removes the smoothing effect in pore structures. However, the calculated velocities showed only incremental improvement. By comparison between thin section images and tomogram, we found that our resolution is not high enough, and it is mainly responsible for the inaccuracy in velocity despite the successful removal of the smoothing effect. In conclusion, our methods can be very useful for pore-scale modeling, since it can create accurate pore structure without the smoothing effect. For accurate velocity estimation, the resolution of pore structure should be at least three times higher than that for permeability simulation.

Site Investigation for Pilot Scale $CO_2$ Sequestration by Magnetotelluric Surveys in Uiseong, Korea (이산화탄소 지중저장 Pilot 부지 선정을 위한 의성지역 MT 탐사)

  • Lee, Tae-Jong;Han, Nu-Ree;Ko, Kwang-Beom;Hwang, Se-Ho;Park, Kwon-Gyu;Kim, Hyung-Chan;Park, Yong-Chan
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.299-308
    • /
    • 2009
  • A magentotelluric (MT) survey at the Uiseong area has been performed for the site investigation of pilot scale $CO_2$ sequestration. The purpose of the MT survey is to delineate deeply extended fracture systems that can act as a leakage path of injected $CO_2$ Plume. Since the target area is extremely noisy in electromagentic sense, low frequency data below 1 Hz cannot be used for inversion. Two- and three-dimensional interpretation of the MT data showed a very clear conductive anomaly, which has the direction of $N55\sim65^{\circ}W$ and is extended roughly down to 1.6 km. It have the same direction with the strike-slip faults, the Gaeum and Geumcheon Faults. On the contrary, the eastern part of the survey area shows relatively homogeneous to the depth of 2 km though some small fractures at shallow depths can be found. Test drilling and high-definition borehole surveys should be followed at the eastern part of the survey area and hydraulic fracturing is required for injection of $CO_2$, because mean porosity of the sedimetary rock in the area is only 1.47%.

Electric and Electromagnetic Surveys of the Hongseong Fault Zone (홍성 단층대에서의 전기, 전자 탐사 연구)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Park, Gye-Soon;Oh, Seok-Hoon;Lee, Choon-Ki
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.361-368
    • /
    • 2003
  • We have investigated the electric resistivity structure of the fault zone located in the Hongseong area where a big earthquake with M 5.0 occurred in 1978. Usually, Electric and Electromagnetic methods are broadly operated in the field of engineering works since these methods are effective to understand the distribution of geological weak zones - fault or fracture zones. We have conducted the dipole-dipole array resistivity method and MT(magnetotelluric) method and interpreted the resistivity distribution of the fault zone with the aid of various inversion methods. An MT survey was performed at 18 points along a 2.9 km survey line perpendicular to the fault line and a magnetic dipole source was used to enhance the S/N ratio in the high frequency. A Electric dipole-dipole array resistivity survey with the dipole length of 50 meters was carried out perpendicular to the fault. In view of two survey results, the fault marks the boundary between two opposite resistivity structures, especially the low resistivity zone is exhibited deeply through the prospective fault line. The result that the low resistivity zone is located at the center of the fault zone corresponds with the fact that the fault zone of the Hongseong area is active. We expect these results to provide basic information about the physical properties of fault zones in Korea.

Electrochemical Characteristics of Microporous Polymer Electrolytes Based on Poly(vinylidene-co-hexafluoropropylene) (PVdF계 미세기공 고분자 전해질의 전기화학적 특성)

  • Jung Kang-Kook;Kim Jong-Uk;Ahn Jou-Hyeon;Kim Ki-Won;Ahn Hyo-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.183-188
    • /
    • 2004
  • In order to develop polymer electrolyte for lithium/sulfur batteries, highly microporous P(VdF-HFP) membranes were prepared by phase inversion method. Porous structure was controlled by extracting NMP with mixture of deionized water and methanol. Porous structure of the membranes was observed with SEM. Polymer electrolytes were prepared by soaking the porous membranes in 1M $LiCF_3SO_3-TEGDME/EC$. The ionic conductivity of polymer electrolyte was found to be at high as $2\times10^{-3}S/cm$ when the polymer membrane extracted by $80\%$ methanol was used. The microporous polymer electrolyte optimized in this work displayed high ionic conductivity, uniform pore size, low interfacial resistance and stable ionic conductivity with storage time. The ionic conductivity of polymer electrolytes was measured with various lithium salts, and the conductivity showed $3.3\times10^{-3}S/cm$ at room temperature when $LiPF_6$ was used as a lithium salt.

Susceptibility Vessel Sign for the Detection of Hyperacute MCA Occlusion: Evaluation with Susceptibility-weighted MR Imaging

  • Lee, Sangmin;Cho, Soo Bueum;Choi, Dae Seob;Park, Sung Eun;Shin, Hwa Seon;Baek, Hye Jin;Choi, Ho Cheol;Kim, Ji-Eun;Choi, Hye Young;Park, Mi Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.105-113
    • /
    • 2016
  • Purpose: Susceptibility vessel sign (SVS) on gradient echo image, which is caused by MR signal loss due to arterial thrombosis, has been reported in acute middle cerebral artery (MCA) infarction. However, the reported sensitivity and diagnostic accuracy of SVS have been variable. Susceptibility-weighted imaging (SWI) is a newly developed MR sequence. Recent studies have found that SWI may be useful in the field of cerebrovascular diseases, especially for detecting the presence of prominent veins, microbleeds and the SVS. The purpose of this study was to evaluate the diagnostic values of SWI for the detection of hyperacute MCA occlusion. Materials and Methods: Sixty-nine patients (37 males, 32 females; 46-89 years old [mean, 69.1]) with acute stroke involving the MCA territory underwent MR imaging within 6 hours after the symptom onset. MR examination included T2, FLAIR (fluid-attenuated inversion recovery), DWI, SWI, PWI (perfusion-weighted imaging), contrast-enhanced MR angiography (MRA) and contrast-enhanced T1. Of these patients, 28 patients also underwent digital subtraction angiography (DSA) within 2 hours after MR examination. Presence or absence of SVS on SWI was assessed without knowledge of clinical, DSA and other MR imaging findings. Results: On MRA or DSA, 34 patients (49.3%) showed MCA occlusion. Of these patients, SVS was detected in 30 (88.2%) on SWI. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of SWI were 88.2%, 97.1%, 96.8%, 89.5% and 92.8%, respectively. Conclusion: SWI was sensitive, specific and accurate for the detection of hyperacute MCA occlusion.

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.