• Title/Summary/Keyword: INVERSE DYNAMICS

Search Result 254, Processing Time 0.026 seconds

Simulation study on the nonlinear evolution of EMIC instability

  • Rha, Kicheol;Ryu, Chang-Mo;Yoon, Peter H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.119.2-119.2
    • /
    • 2012
  • Charged particle energization is an outstanding problem in space physics. This paper investigates the nonlinear dynamics of Alfve'n-cyclotron waves accompanying particle heating processes and the drift Alfv'en-cyclotron (or EMIC) instability associated with a current disruption event on 29 January 2008 observed with THEMIS satellite by means of a particle-in-cell simulation. The simulation shows that the drift Alfv'en-cyclotron instabilities are excited in two regimes, a relatively low frequency mode propagating in a quasi-perpendicular direction while the second high-frequency branch propagating in a predominantly parallel propagation direction, which is consistent with observation as well as earlier theories. It is shown that parametric decay processes lead to an inverse cascade of Alfv'en-cyclotron waves and the generation of ion-acoustic waves by decay instability. It is also shown that the nonlinear decay processes are accompanied by small perpendicular heating and parallel cooling of the protons, and a pronounced parallel heating of the electrons.

  • PDF

Historical Perspective on Fluid Machinery Flow Optimization in an Industry

  • Goto, Akira
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • Fluid-dynamic design of fluid machinery had heavily relied on empiricism and experimental observations for many years. Since 1980s, thanks to the advancements in Computational Fluid Dynamics (CFD), a variety of flow physics have been revealed. The contribution by CFD is indispensable; however, the challenge is required not only on the advancements in CFD technologies but also innovation of "design (optimization) technologies" because of the complex interactions between 3-D flow fields and the complex 3-D flow passage configurations, etc. This paper presents historical perspective on fluid machinery flow optimization in an industry with some messages for the future.

Modeling and Path-Tracking of Wheeled-Mobile Robots having the Limited Drive-Torques (구동토크의 제약을 갖는 구륜이동로봇의 모델링과 경로추적)

  • 김종수;문종우
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.482-491
    • /
    • 2003
  • In this paper are presented kinematic and dynamic modeling and path-tracking of four-wheeled mobile robots with 2 d.o.f haying the limited drive-torques. Controllability of wheeled-mobile robots is revealed by the kinematic model. Instantaneously coincident coordinate system, force/torque propagation and Newton's equilibrium law are used to drive the dynamic model. When drive-torques generated by inverse dynamics exceed the limitation, we make wheeled-mobile robots follow the reference path by modifying the planned reference trajectory with time-scaling. The controller is introduced to compensate for error owing to modeling uncertainty and measurement noise. And simulation results prove that method proposed by this paper is efficient.

Control method for DC Motor based on Neural Networks (인공신경회로망에 기초한 직류모터제어)

  • Park, Jin-Hyun;Choi, Young-Kiu;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.248-250
    • /
    • 1993
  • In this paper, we assume that the dynamics of DC motor and nonlinear load are unknown. We train the inverse dynamic model of DC motor and nonlinear load using the neural network and construct speed control system based on the traind dynamic model and current control mode. Speed prediction scheme using neural network is also proposed the alleviate the time delay effect caused by the computation time of neural network. Simulation results show good performances of the control system. Finally, hardware configuration of the control system is outlined.

  • PDF

Dynamic Modeling and Path-tracking of Differential Drive Wheeled-Mobile Robots (구동토크의 제약을 갖는 차동 구륜이동로봇의 동역학 모델링과 경로추적)

  • Moon, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • In this paper are presented dynamic modeling and path-tracking of differential drive wheeled-mobile robots(WMRs) having the limited drive-torques. Instantaneously coincident coordinate system, force/torque propagation and Newton's equilibrium law are used to induce the dynamic model. When drive-torques generated by inverse dynamics exceed the limitation, we make wheeled-mobile robots follow the reference path by modifying the planned reference trajectory with time-scaling method. The controller is introduced to compensate for error owing to modeling uncertainty and measurement noise. And simulation results prove that method proposed by this paper is efficient.

Effects of Manual Wheelchairs' Transmission on the Propulsion Motion (수동휠체어의 변속 기능이 추진 동작에 미치는 영향)

  • Shin, Eung-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.225-232
    • /
    • 2007
  • This work intends to investigate the effects of shift characteristics on the propulsion performance of a manual wheelchair with an automatic transmission. A planetary gear train is employed to generate a two-stage shift automatically, based on the distance traveled from rest. Motion analysis has been performed for measuring kinematic properties of the arm and then the inverse dynamics has been applied for estimating joint forces/torques. Then, a parametric study has been performed to find a set of the shift ratios and the shift intervals for optimizing propulsion performance. Results show that the propulsion performance is closely related to the shift condition. It is found that a short shift interval is desirable for a short distance propulsion. However, an optimum shift interval for a long distance propulsion is inversely proportional to the shift ratio approximately. Consequently, the automatic transmission can greatly lower the joint loadings by the speed reduction, which eventually contribute to prevent joint injuries of wheelchair users.

Design and Evaluation of the Model Based Controller for a U-tube Steam Generator Level

  • Kim, Keung-Koo;Lee, Doojeong;John E. Meyer;David D. Lanning;John A. Bernard
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.15-24
    • /
    • 1997
  • The design and evaluation of a digital U-tube steam generator level controller of nuclear power plants, which uses model-based compensators to offset the inverse response behavior of water level, is described. Included is a review of steam generator level dynamics, a simulation model that replicates the effects of feedwater and steam flowrate as well as temperature on steam generator level, the design of both the compensators and the overall controller, and the results of simulation studies in which the performances of this model-based controller and existing analog ones were compared. The proposed digital steam generator level controller is stable and its use significantly improves the controllability of steam generator level.

  • PDF

Analysis of Lower Extremity Muscle Force Variations during the Gait Cycle with Optimization Method (보행 시 하지근육 역할에 대한 최적화 기법적 해석)

  • Jeon Eungsik;Kim Young Eun
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.509-514
    • /
    • 2003
  • A mathematical model of human gait was developed to calculate the muscle forces of the lower extremity during walking. The musculoskeletal model consisted of 7 segments and 16 lower extremity muscles. The muscle forces variation during the gait calculated with optimization technique showed a good agreement with previously reported experimental results, mostly EMG variation. Moreover, the resulting joint torques matched well with those from the kinematic data and the inverse dynamics.

A Study on Development of Robot Monotoring System Simulator for Smart Factory (스마트 팩토리를 위한 로봇 모니터링 시스템 시뮬레이터 개발에 관한 연구)

  • Kim, Hee-Jin;Kim, Sang-Hyun;Jang, Gi-Won;Kim, Du-Beum;Dong, Guen-Han;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.561-573
    • /
    • 2019
  • This study proposes a new approach to implement smart factory based on robot monitoring system for a small and medium sized enterprise. The simulator includes the forward kinematics and inverse kinematics analyzes of articulated robots. We also modeled the dynamics of the robot and made it possible to simulate it in the program. We studied the interface between the user and the monitoring programming system using the GUI environment of Windows OS, and it is configured to select the appropriate trajectory planning and control method. The reliability of simulator is illustrated by simulation test.

Reconstruction of missing response data for identification of higher modes

  • Shrikhande, Manish
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.323-336
    • /
    • 2011
  • The problem of reconstruction of complete building response from a limited number of response measurements is considered. The response at the intermediate degrees of freedom is reconstructed by using piecewise cubic Hermite polynomial interpolation in time domain. The piecewise cubic Hermite polynomial interpolation is preferred over the spline interpolation due to its trend preserving character. It has been shown that factorization of response data in variable separable form via singular value decomposition can be used to derive the complete set of normal modes of the structural system. The time domain principal components can be used to derive empirical transfer functions from which the natural frequencies of the structural system can be identified by peak-picking technique. A reduced-rank approximation for the system flexibility matrix can be readily constructed from the identified mass-orthonormal mode shapes and natural frequencies.