• Title/Summary/Keyword: INTERLOCK

Search Result 169, Processing Time 0.04 seconds

Design of a Synthesizable ARM9 Compatible CPU (Synthesizable ARM9 호환 CPU의 설계)

  • 서보익;배영돈;박인철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.200-203
    • /
    • 2000
  • In this paper, we describes the design of a CPU compatible with ARM9 processor. The CPU is fully synthesizable and described in Verilog-XL. Starting from the synthesizable ARM7 compatible CPU we developed earlier, we modified its pipeline to five stages. For this we first partition the behaviors of each instruction into five stage pipeline operations. Then we designed the controller and the datapath considering the forwarding or interlock schemes. Finally the compatibility of the designed CPU is verified by comparing the results of every instruction executed in test programs with those of the reference simulator developed for the ARM7 compatible CPU.

  • PDF

Development of DC switch gear for LRT system protection and control( I ) (경량전철 급전전력 보호 제어용 직류배전반 개발(I))

  • 김남해;백병산;전용주;김지홍;이병송;김종우
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.995-1000
    • /
    • 2002
  • This paper presents general concept of DC switch gear(DCSWGR). Normally, DCSWGR consist of Digital protection unit(DPU), High Speed Circuit Breaker(HSCB), Disconnect Switch (DS), Programmable Logic Control(PLC), Auxiliary Relays and etc. Most of the components has its special characteristics and their interface between each others are various and complex. In this paper every constituent general design are preceded and interface between each component are examined. And also DCSWGR operation logic with logical diagram including interlock signal are introduced.

  • PDF

Development of Hard-wired Instrumentation and Control for the Neutral Beam Test Facility at KAERI

  • Jung Ki-Sok;Yoon Byung-Joo;Yoon Jae-Sung;Seo Min-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.359-365
    • /
    • 2006
  • Since the start of the KSTAR (Korea Superconducting Tokamak Advanced Research) project, Instrumentation and Control (I&C) of the Neutral Beam Test Facility (NB-TF) has been striving to answer diverse requests arising from various facets during the project's development and construction phases. Hard-wired electrical circuits have been designed, tested, fabricated, and finally installed to the relevant parts of the system. In relation to the vacuum system I&C, controlling functions for the rotary pumps, a Roots pump, two turbomolecular pumps, and four cryosorption pumps have been constructed. I&C for the ion source operation are the temperature and flow rate signal monitoring, Langmuir probe signal measurements, gradient grid current measurements, and arc detector circuit. For the huge power system to be monitored or safely operated, many temperature measurement functions have also been implemented for the beam line components like the neutralizer, bending magnet, ion dump, and calorimeter. Nearly all of the control and probe signals between the NB test stand and the control room were made to be transmitted through the optical cables. Failures of coolant flow or beam line vacuum pressure were made to be safely blocked from influencing the system by an appropriate interlock circuit that will shut down the extraction voltage application to the system or prevent damages to the vacuum components. Preliminary estimation of the beam power through the calorimetric measurement shows that 87.9% of the total power of the 60kV/18A beam with 200 seconds duration is absorbed by the calorimeter surface. Most of these I&C results would be highly appropriate for the construction of the main NBI facility for the KSTAR national fusion research project.

ISC-STS Proposal for Reliability Improvement of Communication System's (통신용 전원공급 신뢰성 증진을 위한 ISC-STS 제안)

  • Jung, Hyun-Chul;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.383-390
    • /
    • 2008
  • The SCR in Static Transfer Switch (STS) is used for reliability improvement of important load's power supply in industry field. However an average of 2% fault in thyristor(SCR) occurs, so that the attached mechanical switch is paralleled with SCR's both end points and SCR operates only during the $12{\sim}208$[mS] before operation of the mechanical switch. Also, an ISC (Ideal State Conditioning Interlock Device) - STS system that two power supply paths may not be thrown at the same time is developed to remove the overlap section perfectly when a short or earth fault is generated in one system. This method has reduced the fault rate remarkably through the reduction of SCR's fatigue degree by using SCR in conversion operation corresponding to 0.89 times a year. Also, in case of fault generations, it does not affect to supply power to the load, therefore it contributes to the promotion of reliability in the power supply.

Modeling shear capacity of RC slender beams without stirrups using genetic algorithms

  • Nehdi, M.;Greenough, T.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.51-68
    • /
    • 2007
  • High-strength concrete (HSC) is becoming increasingly attractive for various construction projects since it offers a multitude of benefits over normal-strength concrete (NSC). Unfortunately, current design provisions for shear capacity of RC slender beams are generally based on data developed for NSC members having a compressive strength of up to 50 MPa, with limited recommendations on the use of HSC. The failure of HSC beams is noticeably different than that of NSC beams since the transition zone between the cement paste and aggregates is much denser in HSC. Thus, unlike NSC beams in which micro-cracks propagate around aggregates, providing significant aggregate interlock, micro-cracks in HSC are trans-granular, resulting in relatively smoother fracture surfaces, thereby inhibiting aggregate interlock as a shear transfer mechanism and reducing the influence of compressive strength on the ultimate shear strength of HSC beams. In this study, a new approach based on genetic algorithms (GAs) was used to predict the shear capacity of both NSC and HSC slender beams without shear reinforcement. Shear capacity predictions of the GA model were compared to calculations of four other commonly used methods: the ACI method, CSA method, Eurocode-2, and Zsutty's equation. A parametric study was conducted to evaluate the ability of the GA model to capture the effect of basic shear design parameters on the behaviour of reinforced concrete (RC) beams under shear loading. The parameters investigated include compressivestrength, amount of longitudinal reinforcement, and beam's depth. It was found that the GA model provided more accurate evaluation of shear capacity compared to that of the other common methods and better captured the influence of the significant shear design parameters. Therefore, the GA model offers an attractive user-friendly alternative to conventional shear design methods.

A Study on Content Protection Framework for E-Book DRM-Agnostic based on Readium SDK (Readium SDK 기반 전자책 DRM의 호환을 위한 콘텐츠 보호 프레임워크에 관한 연구)

  • Kim, Tae-Hyun;Yun, Hui-Don;Kang, Ho-Gab;Cho, Seong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • In order to guarantee the compatibility of e-Book viewers based on EPUB 3, IDPF launched Readium SDK v1.0 in January, 2015, which was followed by research on the implementation of Readium LCP specifications for user-friendly DRM functions. The complexity of the Readium SDK, however, makes difficulties in interlocking Readium SDK with LCP modules. Moreover, from the perspective of the Readium SDK, which tries to maintain the architecture, independently of any specific DRM technologies, the strong interlock with LCP, as a one DRM, is not desirable. This study represents a Content Protection Framework Model for compatibility of Readium-SDK-based e-Book DRM in order to hide the complexity of Readium SDK and implement an easy interlock between plural DRM and Readium SDK.

The Fast Interlock Controller for High Power Pulse Modulator at PAL-XFEL (고전압 펄스 모듈레이터의 고속 인터록 제어)

  • Kim, S.H.;Park, S.S.;Kwon, S.J.;Lee, H.S.;Kang, H.S.;Ko, I.S.;Kim, D.S.;Seo, M.H.;Lee, S.Y.;Moon, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.818-819
    • /
    • 2015
  • PAL-XFEL 장치에 사용 할 고전압 펄스 모듈레이터 출력파워는 수 ${\mu}s$ 범위의 짧은 고전압(400 kV), 대전류(500 A) 펄스를 요구한다. 이러한 펄스파워를 얻기 위해서 PFN(Pulse Forming Network)에 에너지를 축적하고, 플라즈마 스위치인 싸이라트론을 통하여 에너지를 신속하게 클라이스트론 쪽으로 전달한다. 클라이스트론은 모듈레이터에서 공급하는 펄스 전원을 이용하여 RF를 증폭하는 대출력 고주파 증폭장치이다. 고전압 펄스 모듈레이터 제어기는 고속펄스 신호처리 모듈(Fast Pulse Signal Conditioning Module), PLC(Programmable Logic Controller)로 구성되어 있다. 고전압 펄스 모듈레이터에 사용하는 대용량 싸이라트론은 고전력을 스위칭 할 때 발생하는 스위칭 노이즈는 매우 크다. 이러한 노이즈는 모듈레이터의 출력 시그널인 빔 전압, 빔 전류, EOLC(End of Line Clipper) 전류, DC high voltage에 섞여 있으면서 신호 왜곡 및 제어장치의 고장을 유발시킨다. 이처럼 노이즈가 많이 포함되어 있는 아닐로그 신호를 깨끗한 신호(a clean signal)로 바꾸어주는 노이즈 필터링 장치인 고속펄스 신호처리 모듈을 제작하여 실험한 결과를 알아보고 모듈레이터 인터록 시스템인 PLC에서 Dynamic Interlock의 응답시간을 빠르게 하기위한 회로 수정에 대한 결과에 관하여 기술하고자 한다.

  • PDF

A Novel Instruction Set for Packet Processing of Network ASIP (패킷 프로세싱을 위한 새로운 명령어 셋에 관한 연구)

  • Chung, Won-Young;Lee, Jung-Hee;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.939-946
    • /
    • 2009
  • In this paper, we propose a new network ASIP(Application Specific Instruction-set Processor) which was designed for simulation models by a machine descriptions language LISA(Language for Instruction Set Architecture). This network ASIP is aimed for an exclusive engine undertaking packet processing in a router. To achieve the purpose, we added a new necessary instruction set for processing a general ASIP based on MIPS(Microprocessor without Interlock Pipeline Stages) architecture in high speed. The new instructions can be divided into two groups: a classification instruction group and a modification instruction group, and each group is to be processed by its own functional unit in an execution stage. The functional unit was optimized for area and speed through Verilog HDL, and the result after synthesis was compared with the area and operation delay time. Moreownr, it was allocated to the Macro function ana low-level standardized programming language C using CKF(Compiler Known Function). Consequently, we verified performance improvement achieved by analysis and comparison of execution cycles of application programs.

Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence

  • El-Chabib, H.;Nehdi, M.;Said, A.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.79-96
    • /
    • 2005
  • The use of high-strength concrete (HSC) has significantly increased over the last decade, especially in offshore structures, long-span bridges, and tall buildings. The behavior of such concrete is noticeably different from that of normal-strength concrete (NSC) due to its different microstructure and mode of failure. In particular, the shear capacity of structural members made of HSC is a concern and must be carefully evaluated. The shear fracture surface in HSC members is usually trans-granular (propagates across coarse aggregates) and is therefore smoother than that in NSC members, which reduces the effect of shear transfer mechanisms through aggregate interlock across cracks, thus reducing the ultimate shear strength. Current code provisions for shear design are mainly based on experimental results obtained on NSC members having compressive strength of up to 50MPa. The validity of such methods to calculate the shear strength of HSC members is still questionable. In this study, a new approach based on artificial neural networks (ANNs) was used to predict the shear capacity of NSC and HSC beams without shear reinforcement. Shear capacities predicted by the ANN model were compared to those of five other methods commonly used in shear investigations: the ACI method, the CSA simplified method, Response 2000, Eurocode-2, and Zsutty's method. A sensitivity analysis was conducted to evaluate the ability of ANNs to capture the effect of main shear design parameters (concrete compressive strength, amount of longitudinal reinforcement, beam size, and shear span to depth ratio) on the shear capacity of reinforced NSC and HSC beams. It was found that the ANN model outperformed all other considered methods, providing more accurate results of shear capacity, and better capturing the effect of basic shear design parameters. Therefore, it offers an efficient alternative to evaluate the shear capacity of NSC and HSC members without stirrups.