• Title/Summary/Keyword: INSERT

Search Result 1,517, Processing Time 0.03 seconds

Changes in the Linear Compressibility and Bulk Modulus of Natural Stilbite Under Pressure with Varying Pressure-Transmitting Media (천연 스틸바이트의 압력전달매개체에 따른 선형압축률 및 체적탄성률 비교 연구)

  • Hwang, Huijeong;Lee, Hyunseung;Lee, Soojin;Jung, Jaewoo;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.367-376
    • /
    • 2022
  • This study is a preliminary step to understand the reaction between various liquids and zeolite in the subduction zone environment. Stilbite, NaCa4(Al9Si27)O72·28(H2O), was selected and high pressure study was conducted on compressional behavior by the pressure-transmitting medium (PTM). Water and NaHCO3 solution that can exist in the subduction zone was used as PTM, and samples were pressurized from ambient to a maximum of 2.5 GPa. Below 1.0 GPa, both experiments show a low linear compressibility in the range of 0.001 to 0.004 GPa-1 and a high bulk modulus of 220(1) GPa. This is presumably because the structure of the stilbite becomes very dense due to insertion of water molecules or cations into the channel. On the other hand, at 1.0 GPa or higher, the trends of the two experiments are different. In the water run, the linear compressibility of the c-axis is increased to 0.006(1) GPa-1. In the NaHCO3 run, the linear compressibility of the b- and c-axis is increased to 0.006(1) GPa-1. The bulk modulus after 1.0 GPa shows values of 40(1) and 52(7) GPa in water and NaHCO3 run, respectively, confirming that stilbite becomes more compressible than that before 1.0 GPa. It is caused by the migration of cations and water molecules inside the channel, as the water molecules in the PTM start to freeze and stop to insert toward the channel at 1.0 GPa or more. In the NaHCO3 run, it is assumed that the distribution of extra-framework species inside the structure is changed by substitution of the Na+ cation. It can be expected from tendency of the relative intensity ratio of the (001) and (020) peaks which show a different from that of the water run.

Image quality and usefulness evaluaton of 3D-CBCT and Gated-CBCT according to baseline changes for SBRT of Lung Cancer (폐암 환자의 정위체부방사선치료 시 기준선 변화에 따른 3D-CBCT(Cone Beam Computed-Tomography)와 Gated-CBCT의 영상 품질 및 유용성 평가)

  • Han Kuk Hee;Shin Chung Hun;Lee Chung Hwan;Yoo Soon Mi;Park Ja Ram;Kim Jin Su;Yun In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.41-51
    • /
    • 2023
  • Purpose: This study compares and analyzes the image quality of 3D-CBCT(Cone Beam Computed-Tomography) and Gated CBCT according to baseline changes during SBRT(Stereotactic Body RadioTherapy) in lung cancer patients to find a useful CBCT method for correcting movement due to breathing Materials and methods : Insert a solid tumor material with a diameter of 3 cm into the QUASARTM phantom. 4-Dimentional Computed-Tomography(4DCT) images were taken with a speed of the phantom at period 3 sec and a maximum amplitude of 20 mm. Using the contouring menu of the computerized treatment planning system EclipseTM Gross Tumor Volume was outlined on solid tumor material. Set-up the same as when acquiring a 4DCT image using Truebeam STxTM, breathing patterns with baseline changes of 1 mm, 3 mm, and 5 mm were input into the phantom to obtain 3D-CBCT (Spotlight, Full) and Gated-CBCT (Spotlight, Full) images five times repeatedly. The acquired images were compared with the Signal-to-Noise Ratio(SNR), Contrast-to-Noise Ratio(CNR), Tumor Volume Length, and Motion Blurring Ratio(MBR) based on the 4DCT image. Results: The average Signal-to-Noise Ratio, Contrast-to-Noise Ratio, Tumor Volume Length and Motion Blurring Ratio of Spotlight Gated CBCT images were 13.30±0.10%, 7.78±0.16%, 3.55±0.17%, 1.18±0.06%. As a result, Spotlight Gated-CBCT images according to baseline change showed better values than Spotligtht 3D-CBCT images. Also, the average Signal-to-Noise Ratio, Contrast-to-Noise Ratio, Tumor Volume Length and Motion Blurring Ratio of Full Gated CBCT images were 12.80±0.11%, 7.60±0.11%, 3.54±0.16%, 1.18±0.05%. As a result Full GatedCBCT images according to baseline change showed better values than Full 3D-CBCT images. Conclusion : Compared to 3D-CBCT images, Gated-CBCT images had better image quality according to the baseline change, and the effect of Motion Blurring Artifacts caused by breathing was small. Therefore, it is considered useful to image guided using Gated-CBCT when a baseline change occurs due to difficulty in regular breathing during SBRT that exposes high doses in a short period of time

  • PDF

Evaluation of Artifacts by Dental Metal Prostheses and Implants on PET/CT Images: Phantom and Clinical Studies (PET/CT 영상에서의 치과재료에 의한 인공물에 관한 연구)

  • Bahn, Young-Kag;Park, Hoon-Hee;NamKoong, Hyuk;Cho, Suk-Won;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2010
  • Purpose: The X-ray attenuation coefficient based on CT images is used for attenuation correction in PET/CT. The polychromatic X-ray beam can introduce beam-hardening artifact on CT images. The aims of the study were to evaluate the effect of dental metal prostheses in phantom and patients on apparent tracer activity measured with PET/CT when using CT attenuation correction. Materials and Methods: 40 normal patients (mean age $54{\pm}12$) was scanned between Jan and Feb 2010. NEMA(National Electrical Manufactures Association) PET $Phantom^{TM}$ (NU2-1994) was filled with $^{18}F$-FDG injected into the water that insert implant and metal prostheses dental cast. Region of interest were drawn in non-artifact region, bright steak artifact region and dark streak artifact region on the same transaxial CT and PET slices. Patients and phantom with dental metal prostheses and dental implant were evaluated the change rate of CT Number and $SUV_{mean}$ in PET/CT. A paired t-test was performed to compare the ratio and the difference of the calculated values. Results: In patients with dental metal prostheses, $SUV_{mean}$ was reduced 19.64% (p<0.05) in the non-steak artifact region than the brightstreak artifact region whereas was increased 90.1% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In phantom with dental metal prostheses, $SUV_{mean}$ was reduced 18.1% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 18.0% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In patients with dental implant, $SUV_{mean}$ was increased 19.1% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 96.62% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In phantom with dental implant, $SUV_{mean}$ was increased 14.4% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 7.0% (p>0.05) in the non-steak artifact region than the dark streak artifact region. Conclusion: When CT is used for attenuation correction in patients with dental metal prostheses, 19.1% reduced $SUV_{mean}$ is anticipated in the dark streak artifact region on CT images. The dark streak artifacts of CT by dental metal prostheses may cause false negative finding in PET/CT. We recommend that the non-attenuation corrected PET images also be evaluated for clinical use.

  • PDF

The Evaluation of SUV Variations According to the Errors of Entering Parameters in the PET-CT Examinations (PET/CT 검사에서 매개변수 입력오류에 따른 표준섭취계수 평가)

  • Kim, Jia;Hong, Gun Chul;Lee, Hyeok;Choi, Seong Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • Purpose: In the PET/CT images, The SUV (standardized uptake value) enables the quantitative assessment according to the biological changes of organs as the index of distinction whether lesion is malignant or not. Therefore, It is too important to enter parameters correctly that affect to the SUV. The purpose of this study is to evaluate an allowable error range of SUV as measuring the difference of results according to input errors of Activity, Weight, uptake Time among the parameters. Materials and Methods: Three inserts, Hot, Teflon and Air, were situated in the 1994 NEMA Phantom. Phantom was filled with 27.3 MBq/mL of 18F-FDG. The ratio of hotspot area activity to background area activity was regulated as 4:1. After scanning, Image was re-reconstructed after incurring input errors in Activity, Weight, uptake Time parameters as ${\pm}5%$, 10%, 15%, 30%, 50% from original data. ROIs (region of interests) were set one in the each insert areas and four in the background areas. $SUV_{mean}$ and percentage differences were calculated and compared in each areas. Results: $SUV_{mean}$ of Hot. Teflon, Air and BKG (Background) areas of original images were 4.5, 0.02. 0.1 and 1.0. The min and max value of $SUV_{mean}$ according to change of Activity error were 3.0 and 9.0 in Hot, 0.01 and 0.04 in Teflon, 0.1 and 0.3 in Air, 0.6 and 2.0 in BKG areas. And percentage differences were equally from -33% to 100%. In case of Weight error showed $SUV_{mean}$ as 2.2 and 6.7 in Hot, 0.01 and 0.03 in Tefron, 0.09 and 0.28 in Air, 0.5 and 1.5 in BKG areas. And percentage differences were equally from -50% to 50% except Teflon area's percentage deference that was from -50% to 52%. In case of uptake Time error showed $SUV_{mean}$ as 3.8 and 5.3 in Hot, 0.01 and 0.02 in Teflon, 0.1 and 0.2 in Air, 0.8 and 1.2 in BKG areas. And percentage differences were equally from 17% to -14% in Hot and BKG areas. Teflon area's percentage difference was from -50% to 52% and Air area's one was from -12% to 20%. Conclusion: As shown in the results, It was applied within ${\pm}5%$ of Activity and Weight errors if the allowable error range was configured within 5%. So, The calibration of dose calibrator and weighing machine has to conduct within ${\pm}5%$ error range because they can affect to Activity and Weight rates. In case of Time error, it showed separate error ranges according to the type of inserts. It showed within 5% error when Hot and BKG areas error were within ${\pm}15%$. So we have to consider each time errors if we use more than two clocks included scanner's one during the examinations.

  • PDF

The study on the scattering ratio at the edge of the block according to the increasing block thickness in electron therapy (전자선 치료 시 차폐블록 두께 변화에 따른 블록 주변 선량에 관한 연구)

  • Park, Zi On;Gwak, Geun Tak;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Kim, Jung Soo;Kwon, Hyoung Cheol;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Purpose: The purpose is to clarify the effect of additional scattering ratio on the edge of the block according to the increasing block thickness with low melting point lead alloy and pure lead in electron beam therapy. Methods and materials: $10{\times}10cm^2$ Shielding blocks made of low melting point lead alloy and pure lead were fabricated to shield mold frame half of applicator. Block thickness was 3, 5, 10, 15, 20 (mm) for each material. The common irradiation conditions were set at 6 MeV energy, 300 MU / Min dose rate, gantry angle of $0^{\circ}$, and dose of 100 MU. The relative scattering ratio with increasing block thickness was measured with a parallel plate type ion chamber(Exradin P11) and phantom(RW3) by varying the position of the shielding block(cone and on the phantom), the position of the measuring point(surface ans depth of $D_{max}$), and the block material(lead alloy and pure lead). Results : When (depth of measurement / block position / block material) was (surface / applicator / pure lead), the relative value(scattering ratio) was 15.33 nC(+0.33 %), 15.28 nC(0 %), 15.08 nC(-1.31 %), 15.05 nC(-1.51 %), 15.07 nC(-1.37 %) as the block thickness increased in order of 3, 5, 10, 15, 20 (mm) respectively. When it was (surface / applicator / alloy lead), the relative value(scattering ratio) was 15.19 nC(-0.59 %), 15.25 nC(-0.20 %), 15.15 nC(-0.85 %), 14.96 nC(-2.09 %), 15.15 nC(-0.85 %) respectively. When it was (surface / phantom / pure lead), the relative value(scattering ratio) was 15.62 nC(+2.23 %), 15.59 nC(+2.03 %), 15.53 nC(+1.67 %), 15.48 nC(+1.31 %), 15.34 nC(+0.39 %) respectively. When it was (surface / phantom / alloy lead), the relative value(scattering ratio) was 15.56 nC(+1.83 %), 15.55 nC(+1.77 %), 15.51 nC(+1.51 %), 15.42 nC(+0.92 %), 15.39 nC(+0.72 %) respectively. When it was (depth of $D_{max}$ / applicator / pure lead), the relative value(scattering ratio) was 16.70 nC(-10.87 %), 16.84 nC(-10.12 %), 16.72 nC(-10.78 %), 16.88 nC(-9.93 %), 16.90 nC(-9.82 %) respectively. When it was (depth of $D_{max}$ / applicator / alloy lead), the relative value(scattering ratio) was 16.83 nC(-10.19 %), 17.12 nC(-8.64 %), 16.89 nC(-9.87 %), 16.77 nC(-10.51 %), 16.52 nC(-11.85 %) respectively. When it was (depth of $D_{max}$ / phantom / pure lead), the relative value(scattering ratio) was 17.41 nC(-7.10 %), 17.45 nC(-6.88 %), 17.34 nC(-7.47 %), 17.42 nC(-7.04 %), 17.25 nC(-7.95 %) respectively. When it was (depth of $D_{max}$ / phantom / alloy lead), the relative value(scattering ratio) was 17.45 nC(-6.88 %), 17.44 nC(-6.94 %), 17.47 nC(-6.78 %), 17.43 nC(-6.99 %), 17.35 nC(-7.42 %) respectively. Conclusions: When performing electron therapy using a shielding block, the block position should be inserted applicator rather than the patient's body surface. The block thickness should be made to the minimum appropriate shielding thickness of each corresponding using energy. Also it is useful that the treatment should be performed considering the influence of scattering dose varying with distance from the edge of block.

An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration (예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석)

  • Seo, jung min;Lee, chang yeol;Huh, hyun do;Kim, wan sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • Purpose : Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. Results : If the target error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, with $2.37{\pm}0.17mm$, suddenly for it is variations in breathing, respective average $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, and analyzed with $2.44{\pm}0.26mm$. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, with $1.63{\pm}0.10mm$, if it is a variant of sudden breathing respective average $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, and analyzed with $1.98{\pm}0.10mm$. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the respiratory form of the person.

  • PDF

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.