• Title/Summary/Keyword: INCLINATION ANGLES

Search Result 235, Processing Time 0.029 seconds

A Study on the Pressure Loss Characteristics of Micro-Channel PCHE (마이크로 채널 PCHE의 압력손실 특성에 관한 연구)

  • Kim, Jin-Hyuck;Baek, Seung-Whan;Jeong, Sang-Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.751-759
    • /
    • 2010
  • A newly developed type PCHE(Printed Circuit Heat Exchanger), which has a longitudinal corrugation flow channel, was fabricated using etching and diffusion bonding to evaluate its hydraulic performance. The pressure drop characteristics obtained from the experimental results are presented and the local friction factors associated with different hydraulic diameters and inclination angles are discussed. The results of a three-dimensional numerical simulation are presented, conducted using commercial CFD(Computational Fluid Dynamics) software at lower Reynolds number range. The numerical results were validated by experimental data obtained from helium gas experimental apparatus. The results of CFD prediction show fairly good agreement with the experimental data.

A comparison study of approximate and Monte Carlo radiative transfer methods for late type galaxy models

  • Lee, Dukhang;Baes, Maarten;Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.49.3-50
    • /
    • 2016
  • Two major radiative transfer (RT) techniques have been developted to model late-type galaxies: approximate RT and Monte Carlo (MC) RT. In the approximate RT, first proposed by Kylafis & Bahcall, only two terms of unscattered (direct) and single-scattered intensities are computed and higher-order multiple scattering components are approximated, saving computing time and cost compared to MC RT. However, the approximate RT can yield errors in regions where multiple scattering effect is significant. In order to examine how significant the errors of the approximate RT are, we compare results of the approximate RT with those of SKIRT, a state-of-the-art MC RT code, which is basically free from the approximation errors by fully incorporating all the multiple scattered intensities. In this study, we present quantitative errors in the approximate RT for late type galaxy models with various optical depths and inclination angles. We report that the approximate RT is not reliable if the central face-on optical depth is intermediate or high (${\tau}_V$ > 3).

  • PDF

Finite Element Analysis of Harmonics Generation by Cracks (균열의 고조파 발생에 대한 유한요소해석)

  • Yang, Seung-Yong;Kim, Noh-Yu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.573-577
    • /
    • 2009
  • When ultrasound propagates to a crack, transmitted and reflected waves are generated. These waves have useful information for the detection of the crack lying in a structure. In this paper, using finite element analysis, displacements round a inclined crack were obtained for 4 different inclination angles. Fourier transformation is applied to the results to research the frequency characteristics depending on the various locations around the crack. 2-dimensional plane stress model is considered, and finite element software ABAQUS/Explicit is used.

VOID FRACTION PREDICTION FOR SEPARATED FLOWS IN THE NEARLY HORIZONTAL TUBES

  • AHN, TAE-HWAN;YUN, BYONG-JO;JEONG, JAE-JUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.669-677
    • /
    • 2015
  • A mechanistic model for void fraction prediction with improved interfacial friction factor in nearly horizontal tubes has been proposed in connection with the development of a condensation model package for the passive auxiliary feedwater system of the Korean Advanced Power Reactor Plus. The model is based on two-phase momentum balance equations to cover various types of fluids, flow conditions, and inclination angles of the flow channel in a separated flow. The void fraction is calculated without any discontinuity at flow regime transitions by considering continuous changes of the interfacial geometric characteristics and interfacial friction factors across three typical separated flows, namely stratified-smooth, stratified-wavy, and annular flows. An evaluation of the proposed model against available experimental data covering various types of fluids and flow regimes showed a satisfactory agreement.

Possibility for Heliotropism from Inclined Columns of Stromatolites, Socheong Island, Korea

  • Kong, Dal-Yong;Lee, Seong-Joo
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.381-392
    • /
    • 2013
  • Socheong island is a unique island containing Precambrian stromatolites in South Korea. Most of Socheong stromatolites are domes and columns, occurring as 10 cm to 1 m thick stromatolite beds. Lower parts of the stromatolite beds are predominantly composed of domes, but columns increase toward the upper level of stromatolite beds. In many of the stromatolite beds, inclined columns are easily identifiable, which is generally considered as a result of heliotropism. From general lithology, sedimentary structures, inclined angles and distributional pattern, and structural deformation of sedimentary rocks of Socheong island, the inclination of Socheong stromatolites could be better interpreted as a secondary structural deformation probably after formation of stromatolite columns, rather than as a result of heliotropism. However, at this moment, we do not clearly reject heliotropism interpretation for inclined columns of Socheong stromatolites. This is because the original position of stromatolite columns could have been lost if structural deformation had affected the whole sedimentary rocks of Socheong island.

An Experimental Study on Heat Transfer Characteristics of a Thermal Diode Type Enclosure with a Guide Vane

  • Kim, Suk-Hyun;Jang, Young-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.10-16
    • /
    • 2001
  • An experimental study for free convective heat transfer in a thermal diode type enclosure is presented. The thermal diode is a device which allows heat to be transferred in one direction by convection due to density difference of the fluid, and consists of a rectangular-paralle-logrammic enclosure with a guide vane. It is used as heat collection system of solar energy due to its simple construction and low cost. Experimental parameters were guide vane thickness, the inclination angles of the parallelogrammic enclosure, and the lengths of the rectangular enclosure part. The parameter range of the flux Rayleigh numbers was $2.4\times{10}^8$~$9.8\times{10}^8$. The heat transfer rate of this system was shown 10~47% higher than that of other earlier research results without the guide vane. The correlation for fixed $\phi=60^\circ$ was obtained, Nu=0.0037(Ra^*)^{0.429}(d^*)^ {0.050}(Lr/H)^{0.0415}$.

  • PDF

An Experimental Study on Wave Absorber Performance of Combined Punching Plate in a Two-Dimensional Mini Wave Tank

  • Jung, Hyen-Cheol;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2021
  • In order to perform a precise wave tank experiment, it is necessary to maintain the incident wave generated by the wavemaker in a steady state and to effectively remove the reflected waves. In this paper, a combined sloping-wall-type punching plate wave absorber was proposed to attenuate reflected waves effectively in a two-dimensional mini wave tank. Using the four-point reflection separation method, the reflected waves were measured to determine the reflection coefficients. Experiments were conducted under various punching plate porosities, sloping plate angles, and incident wave conditions to evaluate the performance of the combined punching plate wave absorber. The most effective wave absorbing performance was achieved when the porosity was 10% and the inclination angle of the punching plate was 18.6° under the present condition. It was also found that the installation of the sloping plate could improve the wave attenuation performance by generating the shoaling effect of the incident wave.

Maximum cavity radius prediction model generated by drop impact in an inclined bath (기울어진 수조에 액적 충돌로 발생한 최대 공동 예측 모델)

  • Lee, Yeawan;Kim, Youngdo;Kim, Hyoungsoo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2019
  • In this study, we show the maximum cavity radius prediction model that a droplet impacts an inclined bath. Surface tensions, viscosities, inclination angles of a bottom substrate, droplet diameters, falling heights of the droplet are varied for the experiment. We experimentally observe that the cavity grows in hemispherical shape like the cavity formed in a deep bath although the depth of the bath is non-uniform due to an inclined bottom substrate. We derive two theoretical models to predict the experimental results of the fully developed cavity. Although each model has error, we observe that qualitatively theoretical model predicts the trend of experiment results well.

Numerical investigation of an add-on thrust vector control kit

  • AbuElkhier, Mohamed G.;Shaaban, Sameh;Ahmed, Mahmoud Y.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.39-57
    • /
    • 2022
  • Instead of developing new guided missiles, converting unguided missile into guided ones by adding guidance and controlkits hasbecome aglobaltrend.Ofthemost efficient andwidelyused thrust vector control(TVC) techniquesin rocketry isthe jet vanes placed inside the nozzle divergentsection. Upon deflecting them, lift created on the vanesistransferred to the rocket generating the desired control moment. The presentstudy examinesthe concept of using an add-on jet vaneTVC kit to a plain nozzle.The impact of adding the kit with different vaneslocations and deflectionanglesisnumericallyinvestigatedbysimulatingtheflowthroughthenozzlewiththekit.Twohingelocations are examined namely, at 24% and 36% of nozzle exit diameter. For each location, angles of deflection namely 0°, 5°, 10°, and 15° are examined. Focus is made on variation of control force, thrust losses, lift and drag on vanes, jet inclination, and jetflow structure withTVCkit design parameters.

Thermomechanical interactions in a transversely isotropic thermoelastic media with diffusion due to inclined load

  • Parveen Lata;Heena
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.263-272
    • /
    • 2024
  • This research deals with the study of two-dimensional deformation in transversely isotropic thermoelastic diffusion medium. This investigation integrates the effect of diffusion and thermal effects in transversely isotropic thermoelastic solids under inclined load. Inclined load is taken as linear combination of normal load and tangential load. Laplace and Fourier transformation techniques are employed to transform the physical domain and then transformed solutions are inverted with the aid of numerical inversion techniques. Concentrated and distributed load are considered to exemplify its utility. Graphical representation of variation in displacement, stresses, temperature and concentration distribution with distance is depicted by taking inclination at different angles. Some particular cases are studied.