• Title/Summary/Keyword: IMU sensor

Search Result 250, Processing Time 0.025 seconds

Machine Learning-Based Filter Parameter Estimation for Inertial/Altitude Sensor Fusion (관성/고도 센서 융합을 위한 기계학습 기반 필터 파라미터 추정)

  • Hyeon-su Hwang;Hyo-jung Kim;Hak-tae Lee;Jong-han Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.884-887
    • /
    • 2023
  • Recently, research has been actively conducted to overcome the limitations of high-priced single sensors and reduce costs through the convergence of low-cost multi-variable sensors. This paper estimates state variables through asynchronous Kalman filters constructed using CVXPY and uses Cvxpylayers to compare and learn state variables estimated from CVXPY with true value data to estimate filter parameters of low-cost sensors fusion.

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.

Test-retest Reliability and Intratest Repeatability of Measuring Cervical Range of Motion Using Inertial Measurement Unit (관성측정장치를 이용한 경추관절 가동범위 측정의 검사 내 반복성 및 검사-재검사 신뢰도 연구)

  • Kim, Hyun Ho;Kim, Kyung Wook;Park, Ji Min;Kim, Eun Seok;Lee, Min Jun;Kang, Jung Won;Lee, Sang Hoon;Park, Young Bae
    • Journal of Acupuncture Research
    • /
    • v.30 no.4
    • /
    • pp.25-33
    • /
    • 2013
  • Objectives : To assess the test-retest reliability and the intratest repeatability in measuring the cervical range of motion of healthy subjects with wireless microelectromechanical system inertial measurement unit(MEMS-IMU) system and to discuss the feasibility of this system in the clinical setting to evaluate the cervical spine musculoskeletal. Methods : 12 healthy people who were evaluated as no- or mild-disability with neck disability index were participated. Their cervical motion were measured with IMU twice in consecutive two days for the test-retest reliability study. Intratest repeatability was calculated in the two tests separately. The calculated intraclass correlation coefficients(ICC) were discussed and compared with the those of the previous studies. Results : Cervical range of motion data were acquired and statistically processed: left rotation($61.64^{\circ}$), right rotation($65.12^{\circ}$), extension($61.98^{\circ}$), flexion($52.81^{\circ}$), left bending($39.31^{\circ}$), right bending($41.08^{\circ}$). ICCs were 0.77~0.98(intratest repeatability) and 0.74~0.93 (test-retest reliability) in the primary motion. In the coupling motion, intratest repeatability ICCs were 0.93~ 0.99(transverse primary plane), 0.88~0.97(saggital primay plane), and 0.77~0.93(coronal primary plane). Test-retest reliability of coupling motion were 0.90~0.97(transverse primary plane), 0.00~0.72(saggital primary plane), and 0.04~0.76(coronal primary plane). Conclusions : Several types of range-of-motion devices are now on use in many fields including medicine, but the practicality of the devices in clinical use is questionable for the convenient and economical aspects. In this study, we presented the reliability of cervical range of motion test with the developed wireless MEMS-IMU system and discussed its potential utility in clinical use.

Biomechanical Research Trends for Alpine Ski Analysis (알파인 스키 분석을 위한 운동역학 연구 동향)

  • Lee, Jusung;Moon, Jeheon;Kim, Jinhae;Hwang, Jinny;Kim, Hyeyoung
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.6
    • /
    • pp.293-308
    • /
    • 2018
  • This study was carried out to investigate the current trends in skiing-related research from existing literature in the field of kinematics, measurement sensor and computer simulation. In the field of kinematics, research is being conducted on the mechanism of ski turn, posture analysis according to the grade and skill level of skiers, friction force of ski and snow, and air resistance. In the field of measurement sensor and computer simulation, researches are being conducted for researching and developing equipment using IMU sensor and GPS. The results of this study are as follows. First, beyond the limits of the existing kinematic analysis, it is necessary to develop measurement equipment that can analyze the entire skiing area and can be deployed with ease at the sports scene. Second, research on the accuracy of information obtained using measurement sensors and various analysis techniques based on these measures should be carried out continuously to provide data that can help the sports scene. Third, it is necessary to use computer simulation methods to clarify the injury mechanism and discover ways to prevent injuries related to skiing. Fourth, it is necessary to provide optimized ski trajectory algorithm by developing 3D ski model using computer simulation and comparing with actual skiing data.

Underwater Hybrid Navigation Algorithm Based on an Inertial Sensor and a Doppler Velocity Log Using an Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 알고리듬)

  • 이종무;이판묵;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), and a Doppler velocity log (DVL), accompanied by a magnetic compass. The errors of inertial measurement units increase with time, due to the bias errors of gyros and accelerometers. A navigational system model is derived, to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 20. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors, and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o,f equations of motion of SAUV, using a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance, by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass, and a depth sensor. The error of the estimated position still slowly drifts in the horizontal plane, about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

Vehicle Orientation Estimation by Using Magnetometer and Inertial Sensors (3축 자기장 센서 및 관성센서를 이용한 차량 방위각 추정 방법)

  • Hwang, Yoonjin;Choi, Seibum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.408-415
    • /
    • 2016
  • The vehicle attitude and sideslip is critical information to control the vehicle to prevent from unintended motion. Many of estimation strategy use bicycle model or IMU integration, but both of them have limits on application. The main purpose of this paper is development of vehicle orientation estimator which is robust to various vehicle state and road shape. The suggested estimator use 3-axis magnetometer, yaw rate sensor and lateral acceleration sensor to estimate three Euler angles of vehicle. The estimator is composed of two individual observers: First, comparing the known magnetic field and gravity with measured value, the TRIAD algorithm calculates optimal rotational matrix when vehicle is in static or quasi-static condition. Next, merging 3-axis magnetometer with inertial sensors, the extended Kalman filter is used to estimate vehicle orientation under dynamic condition. A validation through simulation tools, Carsim and Simulink, is performed and the results show the feasibility of the suggested estimation method.

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.

Implementation of Deep-sea UUV Precise Underwater Navigation based on Multiple Sensor Fusion (다중센서융합 기반의 심해무인잠수정 정밀수중항법 구현)

  • Kim, Ki-Hun;Choi, Hyun-Taek;Kim, Sea-Moon;Lee, Pan-Mook;Lee, Chong-Moo;Cho, Seong-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.46-51
    • /
    • 2010
  • This paper describes the implementation of a precise underwater navigation solution using a multi-sensor fusion technique based on USBL, DVL, and IMU measurements. To implement this precise underwater navigation solution, three strategies are chosen. The first involves heading alignment angle identification to enhance the performance of a standalone dead-reckoning algorithm. In the second, the absolute position is found quickly to prevent the accumulation of integration error. The third one is the introduction of an effective outlier rejection algorithm. The performance of the developed algorithm was verified with experimental data acquired by the deep-sea ROV, Hemire, in the East-sea during a survey of a methane gas seepage area at a 1,500 m depth.

Bezier Curve-Based Path Planning for Robust Waypoint Navigation of Unmanned Ground Vehicle (무인차량의 강인한 경유점 주행을 위한 베지어 곡선 기반 경로 계획)

  • Lee, Sang-Hoon;Chun, Chang-Mook;Kwon, Tae-Bum;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.429-435
    • /
    • 2011
  • This paper presents a sensor fusion-based estimation of heading and a Bezier curve-based motion planning for unmanned ground vehicle. For the vehicle to drive itself autonomously and safely, it should estimate its pose with sufficient accuracy in reasonable processing time. The vehicle should also have a path planning algorithm that enables to adapt to various situations on the road, especially at intersections. First, we address a sensor fusion-based estimation of the heading of the vehicle. Based on extended Kalman filter, the algorithm estimates the heading using the GPS, IMU, and wheel encoders considering the reliability of each sensor measurement. Then, we propose a Bezier curve-based path planner that creates several number of path candidates which are described as Bezier curves with adaptive control points, and selects the best path among them that has the maximum probability of passing through waypoints or arriving at target points. Experiments under various outdoor conditions including at intersections, verify the reliability of our algorithm.

Study of ARS using Ring Laser Gyro (Ring Laser Gyro를 이용한 ARS에 관한 연구)

  • Jeong, Sang-Ki;Choi, Hyeung-Sik;Ji, Dae-Hyeong;Jung, Dong-Wook;Kwon, O-Soon;Shin, Chang-Joo;Seo, Jung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.164-169
    • /
    • 2017
  • Studies were performed on an ARS using SDINS's RLG and the geomatic sensor. To develop the ARS, experiments were performed to determine the characteristics of the RLG and geomatic sensor. Based on the results, to reduce the angular position errors of the RLG, which accumulate from the angular velocity data, an algorithm was studied that uses the Extended Kalman filter (EKF) to compensate the RLG data and geomatic sensor data. To verify the performance of the developed algorithm for reducing the cumulative angular errors, experiments that included the developed EKF were performed. Through these, it was shown that a drastic reduction in the angular errors of the RLG were achieved.